

Advantech AE Technical Share Document

Date	2015/10/16	SR#	1-2271772118
Category	■FAQ □SOP	Related OS	N/A
Abstract	ADAM-6000 & ADAM-6200, How to convert the Modbus raw data into engineer		
	unit		
Keyword	ADAM, Modbus, Raw data, Engineer unit. Analog input		
Related	ADAM-4017+, ADAM-4018+, ADAM-4019+, ADAM-4117, ADAM-6017,		
Product	ADAM-6018, ADAM-6217, ADAM-6218		

Problem Description:

This document explain the formula to convert the Modbus raw data into engineer unit that represent the voltage, current, temperature for different Al input range of ADAM module.

■ Brief Solution - Step by Step:

Take the *Figure 1* as an example, the Modbus value of AlO is "BF1D" in the hexadecimal, how to convert this value into a reasonable engineer unit between the physical input range (+/-10V)?

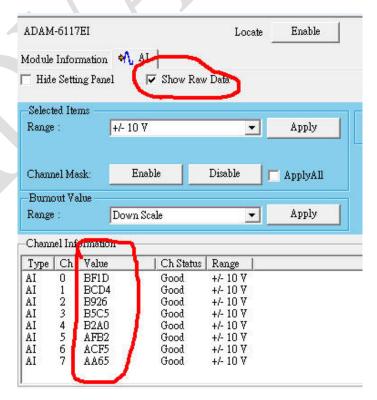


Figure 1

Since the resolution of the analog input is 16 bit, the full range of the Modbus raw data will locate in the range from 0 to 65535 (2^{16})

First of all, convert the raw data "BF1D" (HEX) to the decimal, which is 48925.

The customer can get the voltage value of AIO with the Equation 1

Value in the engineer unit

= (Modbus raw data (in decimal))/65535 * input range

+ lower value of the input range

Equation 1

So the engineer unit of 48925 for the Modbus raw data equals to

48925/65535 * (10-(-10))+ (-10)=4.931V

The result is same as the value showed in the utility. (Figure 2)

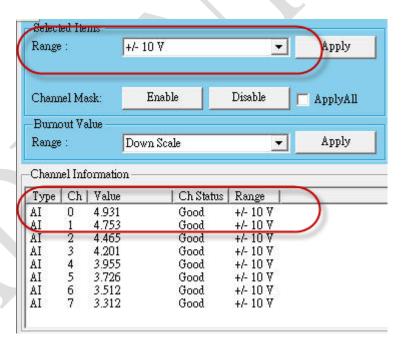


Figure 2