Trusted ePlatform Services

ADMNTECH

SUSI® Library

Version 3.0

User’s Manual

Advantech Co. Ltd.

No. 1, Alley 20, Lane 26,
Rueiguang Road, Neihu District,
Taipei 114, Taiwan, R. O. C.

www.advantech.com

Copyright Notice

This document is copyrighted, 2006, by Advantech Co., Ltd. All rights reserved.
Advantech Co., Ltd. Reserves the right to make improvements to the products
described in this manual at any time. Specifications are thus subject to change without
notice.

No part of this manual may be reproduced, copied, translated, or transmitted in any
form or by any means without prior written permission of Advantech Co., Ltd.
Information provided in this manual is intended to be accurate and reliable. However,
Advantech Co., Ltd., assumes no responsibility for its use, or for any infringements
upon the rights of third parties which may result from its use.

All the trade marks of products and companies mentioned in this data sheet belong to
their respective owners.

Copyright © 1983-2008 Advantech Co., Ltd. All Rights Reserved

Part No.
Version: 3.0

Printed in Taiwan 2008-11-26

Version History

Date

Version

Part no

Remark

2006-7-27

1.0

New release

2006-9-29

11

Add hardware monitoring support for
SOM-4472/SOM-4475/SOM-4481/SOM-4486

2007-6-27

1.2

Add many new functions over
Control APIs
Programmable GP1O, SMBus Enhanced
Protocols
Monitoring APIs
Boot Counter and Running Timer, H/W
Control
Display APIs
Auto-Brightness, Hotkey VGA Control
Debug API
Get last error code
About new SUSI-enabled platforms, please refer
to Appendix A

2007-10-01

2.0

Add Embedded BIOS interface

Add Power Saving API: CPU Speed, System
Throttling & Smart Hibernation

Add Security API for AIMB-440 onboard
FPGA: SRAM, AES, RNG, 72 bit GPIO

2008-05-01

3.0

Add Embedded BIOS interface for Linux

Add SUSI Manager for central control of SUSI
Add utilities for Monitoring, PowerSaving,
HotKey manager, Brightness Control,

Security ID, ePlatformFlash

2008-11-26

3.0

Add SMBus Programming Note

Table of Contents

INTRODUCTION. ..ottt ettt et e et e s st e e s bt e e st e e s st e e s sabe e s sareessrenas 6
S U] I U o3 1o o PSR 7
TS LS {15 9
ENVIRONMENTS .ottt ettt st s e st e s sate e s sate e s ereeas 10
PACKAGE CONTENTS .. oottt sttt 11
PROGRAMMING OVERVIEW.......co ottt 12
(OF0] (=38 U1 (1110 0 13U 13
Watchdog (WD) fUNCHIONSocviiiiiiiiieieeeee e 13
GPIO (IO) TUNCHIONS ...ttt be s 13
SMBUS fUNCLIONS ...ttt st st e e s st e e s sabe e s sbae e s sbeeeans 14
1 (@ 18 o o3 10 o 1 14
VGA Control (VC) fUNCLIONScoouiiiiiieiiiie e 15
Hardware Monitoring (HWM) fUNCLIONScccoeiiiiiiice e 15
FPGA SRAM fUNCLIONS ...ttt ettt 15
FPGA 72 Bit GPIO fUNCLIONS......ci ittt e 15
[e Y A AN IR (] (o1 0] 1S 16
FPGA RNG fUNCHONS ...ttt sttt sttt st 16
SUSI API PROGRAMMER’S DOCUMENTATION......ccccoiiiieiiee e 17
S UL L TR 17
SUSIDIHUNINIT ottt e e s s te e e s s bt e e e s s ebbee e s s sabaneeeans 18
S U B | LT AV =T 6] (o] TSRO 19
S U B [T I £ = (o TR 20
SUSICOTEAVAIIADIE ... 21
SUSICOrEGEIBIOSVEISION ...ttt et s s e e s s sab e e e e s sbbaeeeaans 22
SUSICOreGetPlatfOrMNAMEvee it 23
SUSICOreACCESSBOOICOUNTETccviieiiiec ettt et e e erre e eaee e 24
SUSICOIEACCESSRUNTIMEccvviiiitieecctiee ettt ettt e eetee e et sb e e sbe e s sabe e s sabeessraeessreeeans 26
SSCORE_RUNTIMER ...ttt sttt 27
SUSIWDAVAINADIE ...t ebae e s bae e 28
SUSIVWDGEIRANGE ...ttt ettt st nre s 29
SUSIVWD SEICONTIG 1.vveevieciiet ettt sbe e e e ste e esnaenne s 30
SUSIVWDTIIGOEN ..ttt sttt sttt sttt e b et e st et eesbe st e nbeeneesreenteaneeas 31
SUSIWDDISADIE ...t srb e e s erbe e s b ae e s bee e e 32
SUSHHOAVAIADIE. ... e 33
SUSTTOCOUNTEX.....cuviiiiitie ittt ettt s et e e e e s b e e st a e s st e e e sab e e e sab e e s sabeesssbeeasreeeans 34
SUSTHTOQUETYIMASK ...ttt et ae bt enee s 35
SV 1 L@ 1= B IT (1ot o] o TR 36
SUSHHOSEIDITECHONMUILL......ovviiiiciiiie e 37
SUSHTOREAUEXcvviiiciiii ettt ettt e e st e e s sabe e s saaeessaeeeans 38
SUSHTOREAAMUITIEXvveiiiiiiiic ittt st ebbae e s s eabaee e ns 39
SUSTTOWIIEEEX .ottt ettt e st e e e sba e e sbae e sabeeens 40
SUSTHOWIEEMUITIEX ...vveiiiiiiiie ettt s s b n e e s ebraeeeaans 41
SUSIBABItSIOQUEIYMASKvviiieieciiece et 42
SUSIBABItSIOSEIDITECHION ...ttt ebb e e s ebbae e e ns 43
Susi64BitsSIOSEtDIreCHONMUILEeeicviiiiciiie e 44
SUSIBABItSIOREAAMUITIEXccciiiiiii ittt brae e 45
SUSIBABITSIOWITEMUIIEXvvviivii ettt 46
SUSISMBUSAVAIADIE ...t ebaa e aans 47

SUSISMBUSSCANDEVICE ... et 48

SUSISMBUSREAAQUICKccouviiitiiiiic et re e e e 49
SUSISMBUSWIITEQUICKocviiiiiciie e 50
SUSISMBUSRECEIVEBYLE. ..ottt 51
SUSISMBUSSENUBYLEeouiiiiieiiieie ettt 52
SUSISMBUSREAUBYLEocuviiiieciieie ettt et e e e 53
SUSISMBUSWIITEBYLE ..ottt 54
SUSISMBUSREAAWOIT ...ttt bbb 55
SUSISMBUSWIEEWOIT ...ttt 56
SUSTHHTCAVAIIADIE ... 57
SUSTTICREAT ...ttt sb ettt sre e b 58
SUSTITCWVIITE ... bbbttt bbbt 59
SUSTHICWIiteReadCOoMDINE ..o 60
SUSIVCAVAIADIE ... 60
SUSIVCGEBIIGNTRANGEveiieeiieee e 62
SUSIVCGEIBIIGNT ... nne s 63
SUSIVECSEIBIIGNT ...t ae s 64
SUSTVCSCIEENON. ...ttt sttt bbbttt ettt bbb ene e 65
SUSIVCSCIEENOTT ...ttt sbe e 66
SUSTHWMAWVAIIEDIE..........ooiiiiiicce e 67
SUSIHWMGELFANSPEEA ...ttt nne s 68
SUSTHWMGELTEMPEIALUIEecvveiie e ciee st esee e ae et ae e steenae e sneennesraesseeneeas 69
SUSTHWMGELTVOITAGE oottt et 70
SUSIHWMSELIFANSPEEA. ..ottt snaenne s 71
SUSIFPGA API PROGRAMMER’S DOCUMENTATIONccoooiiiiiiiniiiee 72
SUSIFPGADIINIT ..ot 72
SUSIFPGADHUNINIT ...ttt 73
SUSIFPGASIOrageAraGEeITYPEocuveieiiiiieeiieeie st 74
SUSIFPGASLOrageAr aGELSIZEocvveiveeieiie ettt 75
SUSIFPGASIOrageAreaREaM.........c.veiviieiriisiieiieie et 76
SUSIFPGASLOrageATrEaAWNILEc.veivieiecie ettt te et sre e e nne s 7
SUSIFPGASIOrageAIBaAETASEc.viiiveiiiiiiieesie ettt 78
SUSIFPGAStorage AreaFPGACONTIG.....ccv i 79
SRAIM . e e ettt nr e aenrenreane e 80
SUSIFPGAIOFPGACOUNTEXeuviviiiieitisiisiisieeie ettt st 81
SUSIFPGAIOFPGAREAUEXcc.ciuiitiiuiiiiiiieieiiesiesiesie st ste e e eaesaeaesse e sse e ssessesneans 82
SUSIFPGAIOFPGAREAAMUITIEXccueiviiiiiiieiieieieiie st 83
SUSIFPGAIOFPGAWIIEEX ...vvevveuieiieiie ittt eeeieiesie ettt 84
SUSIFPGAIOFPGAWITEMUITIEX.........ciiiiiieieieie et 85
SUSIFPGASECUrityFPGASEIAESKEYccviiiiiiiieie et 86
SUSIFPGASECUrityFPGAGELAESKEYocveiiieiicieecie ettt 87
SUSIFPGASecurityFPGAGENErate AESDALA...........ccververiiiiiiisieeeeee e 88
SUSIFPGASecurityFPGAGenerateRandomMNUMcccooveiiiiieieciece e 89
APPENDIX A - GPIO INFORMATION ...coiiiiiiieiiienieeeeee e 90
APPENDIX B - PROGRAMMING FLAGS OVERVIEWc.ccccocvvviiirinn, 96
APPENDIX C - API ERROR CODES........ccootiiitiineeseee e 99

FUNCTION INDEX CODE-.....ciiitiiiiiiiiiiaeeeeeiie e e et eeeeet e e ee s e e e eeaa e e e eeen e eaeees 99

LIBRARY ERROR CODEuuuuuttuuiuiuninnuninnnnnssssnsssnnnnsnssssnsnssssssssnsnnnnnsnnssnennnne 102

DRIVER ERROR CODE......iiiiiiiieiiiiiaeeeeei e e et e ee e e e eets e e e et e e e eenn e 104

Introduction

SUSI - A Bridge to Simplify & Enhance H/W & Application
Implementation Efficiency

‘*ﬁ’a:j
video
| _Brightnes

When developers want to write an application that involves hardware access, they
have to study the specifications to write the drivers. This is a time-consuming job and
requires lots of expertise.

Advantech has done all the hard work for our customers with the release of a suite of
APIs (Application Programming Interfaces), called the Secured & Unified Smart

Interface (SUSI).

SUSI provides not only the underlying drivers required but also a rich set of
user-friendly, intelligent and integrated interfaces, which speeds development,
enhances security and offers add-on value for Advantech platforms. SUSI plays the
role of catalyst between developer and solution, and makes Advantech embedded
platforms easier and simpler to adopt and operate with customer applications.

SUSI v3.0 contains 5 main off-the-shelf utilities:

Power Saving

Provides green power settings for max. energy savings and performance
HotKey

Sets keyboard short-cuts for GP1O and control

Video Brightness

Manual and auto modes for easy control of panels

Monitoring

Real-time temperature, fan and voltage monitoring, and alarm settings
Security

For multi-level protection with hash encryption

SUSI Functions

Hotke
. V. _==N\ General Purpose Input Output function is a flexible parallel interface that
GPIO allows a variety of custom connections and supports Digital I/O devices.

The Keyboard Controller APl allows developers to dynamically set
short-cuts for different combinations of keyboard events. Customers can
also use it to pre-define function keys for a keyboard-less system.

Hotkey VGA
This function provides a Hotkey for VGA Control; users can press CTRL
plus “+” or “-” to increase or decrease brightness. Pressing Ctrl + 6 for

(0]
e example will give 60% brightness.

Monitoring

A watchdog timer (WDT) is a function that performs a specific operation
after a certain period of time if something goes wrong with the system.

A watchdog timer can be programmed to restart the system after a certain
time period when a program or computer fails to respond or hangs.

The Hardware Monitor (HWM) API is a system health supervision API
that inspects certain condition indexes, such as Fan Speed,
Temperature and Voltage.

The Hardware Control API allows developers to set the PWM (Pulse
Width Modulation) value to adjust Fan Speed or other devices and can
also be used to adjust the LCD brightness.

Video Brightness

AT

Brightness

.")%A.

CPU Speed

The Brightness Control API allows a developer to interface with Windows
XP and Windows CE PCs to easily control brightness.

The Auto-Brightness function contains a new APl and a Light Sensor IC,
S0 systems can have a built-in Auto-Brightness adjustment utility.

The Backlight API allows a developer to control the backlight (screen) on/off
in Windows XP and Windows CE.

Makes use of Intel SpeedStep technology to save power consumption. The
system will automatically adjust the CPU Speed depending on the system
load.

12.5%.

Smart
Hibernation
z;g APl for customers to easily enable Hibernation. The Windows
" hibernation feature conforms to the S4 Sleep State in the ACPI
standard.
Securit

ePlatformFlash
\ 3 ePlatformFlash is used to update the Advantech ePlatform BIOS and
: : read/write a security ID into BIOS

We use SHA1-160, SHA1-256, SHA1-384, SHA1-512 array values to
adopt different algorithms and lengths to encrypt each column to protect
the keys.

Security consists of 3 different IDs: 1. Board ID: a unique string for each
board, ready in the factory - Read Only. 2. Vendor ID: unique string for each
customer or project, set in the factory - Read Only. 3. Customer ID: unique
string defined by the customer, and input by the customer. Together they
provide triple protection.

Benefits

Faster Time to Market

SUSI's unified API helps developers write applications to control the hardware
without knowing the hardware specs of the chipsets and driver architecture.
Reduced Project Effort

When customers have their own devices connected to the onboard bus, they can
either: study the data sheet and write the driver & API from scratch, or they can
use SUSI to start the integration with a 50% head start. Developers can reference
the sample program on the CD to see and learn more about the software
development environment.

Enhances Hardware Platform Reliability

SUSI provides a trusted custom ready solution which combines chipset and
library function support, controlling application development through SUSI
enhances reliability and brings peace of mind.

Flexible Upgrade Possibilities

SUSI supports an easy upgrade solution for customers. Customers just need to
install the new version SUSI that supports the new functions.

Environments

Operating Systems that SUSI supports include:

o Windows CE
¢ Windows XP Embedded
o Windows XP Pro or Home Edition

For the complete list of SUSI-enabled platforms, please refer to Appendix A. Note
that the list may be changed without notice. For the latest support list, please check:
http://www.advantech.com.tw/ess/SUSI.asp

Should you have any questions about your Advantech boards, please contact us by
telephone or E-mail.

10

http://www.advantech.com.tw/ess/SUSI.asp�

Package Contents

SUSI currently supports two OS - Windows CE and Windows XP. Contents listed
below:

Operating System Location Installation
Windows XP(e) C:\Program Files\SUSI\VV30 Setup.exe
Windows CE \Program Files\SUSI\V30 Image Built-in *

Directory Contents
User Manual SUSIL.pdf
e Susi.lib
Function export
Library Files e Susi.dll

Dynamic link library

e Susi.h
Include Files o Debug.h /Errdrv.h / Errlib.h

e SusiDemo.exe
Demo program execution file

SusiDemo
ue! e Susi.dll
Dynamic link library
SusiDemo\SRC\ C# Source code of SusiDemo program in C#, VS2005

. Source code of Watchdog of SusiDemo program in
SusiDemo\SRC \VB.NET VB.NET, V52005

* Windows CE manual installation:
You can add the SUSI Library into the image by editing any bib file.
B First you open project.bib in the platform builder.
B Add this line to the MODULES section of project.bib
Susi.dll - $(_ FLATRELEASEDIR)\Susi.dll NK SH
m If you want to run the window-based demo, add the following line:
SusiTest.exe $(_FLATRELEASEDIR)\SusiTest.exe
® If you want to run the console-based demo, add following lines:
Watchdog.exe $(_FLATRELEASEDIR)\Watchdog.exe ~ NK'S
GPI10.exe $(_FLATRELEASEDIR)\GPIO.exe NK S
SMBUS.exe $(FLATRELEASEDIR)\SMBUS.exe NK'S
B Place the three files into any files directory.
B Build your new Windows CE operating system.

11

Programming Overview

Header Files

m SUSLH includes API declaration, constants and flags that are required for
programming.

s DEBUG.H/ERRDRV.H / ERRLIB.H are for debug code definitions.
DEBUG.H - Function index codes
ERRLIB.H - Library error codes
ERRDRV.H - Driver error codes

Library Files
m Susi.lib is for library import and Susi.dll is a dynamic link library that exports
all the API functions.

Demo Program
m The SusiDemo program, released with source code, demonstrates how to fully
use SUSI APIs. The program is written in the latest programming language C#.

Drivers

There are seven drivers for SUSI: CORE, WDT, GPIO, SMBus, IIC, VC and HWM.
E.g. Driver CORE is for SusiCore- prefixed APIs, and so on.

A driver will be loaded only if its corresponding function set is supported by a
platform.

Installation File

In Windows CE, the files and drivers mentioned above are already built-in to the
image. In Windows XP, you have to run Setup.exe for installation. To avoid double
installation, please make sure you have removed any existing SUSI drivers, either by
using Setup.exe or by manually removing them in Device Manger.

DIl functions
SusiDII- APIs are driver-independent, i.e. they can be called without any drivers.
In Windows XP, after drivers having been installed, users have to call
SusiDI I Init for initialization before using any other APIs that are not SusiDl1-
prefixed. Before the application terminates, call SusiDIIUnInit to free allocated
system resources.
When an API call fails, use SusGetLastError to get an error report. An error
value will be either

Function Index Code + Library Error Code, or

Function Index Code + Driver Error Code
The Function Index Code indicates which API the error came from and the library /
Driver Error Code indicates the actual error type, i.e. whether it was an error in a
library or driver. For a complete list of error codes, please refer to the Appendix

12

SusiDIlInit
SusiDIlUninit
SusiDl1GetLastError
SusiDlIGetVersion

Core functions

SusiCore- APIs are available for all Advantech SUSI-enabled platforms to provide
board information such as the platform name and BIOS version. New
SusiCoreAccessBootCounter and SusiCoreAccessBootCounter APIs

are Boot Logger features that enable monitoring of system reboot times, total OS run
time and continual run time.

SusiCoreGetPlatformName
SusiCoreGetBIl0SVersion
SusiCoreAccessBootCounter
SusiCoreAccessRunTimer

Watchdog (WD) functions

The hardware watchdog timer is a common feature among all Advantech platforms. In
user applications, call SusiWDSetConfig with specific timeout values to start the
watchdog timer countdown, meanwhile create a thread or timer to periodically refresh
the timer with SusiWDTrigger before it expires. If the application ever hangs, it
will fail to refresh the timer and the watchdog reset will cause a system reboot.

SusiWDGetRange
SusiWDSetConfig
SusiWDTrigger
SusiWDDisable

GPIO (10) functions

There are two sets of GPIO functions. It is highly recommended to use the new one.
With pin read and write, more flexibility has been added to allow easy pin direction
change as needed, as well as the capability of reading output pin status.

New programmable GPIO function set:
Susi 10CountEx

Susi I0QueryMask
SusilOSetDirection
SusilOSetDirectionMulti
Susi IOReadEx
SusilOReadMultiEx
SusiIOWriteEx
SusilOWriteMultiEx

Previous function set:

= SusilOCount

s SusilOlnitial

= SusilORead

s SusilOReadMulti;

13

m SusilOWrite
m SusilOWriteMulti

Refer to Appendix for pin allocation and their default direction.

SMBus functions

We support the SMBus 2.0 compliant protocols in SusiSMBus- APIs :

Quick Command — SusiSMBusReadQuick/SusiSMBusWriteQuick
Byte Receive/Send — SusiSMBusReceiveByte/SusiSMBusSendByte
Byte Data Read/Write — SusiSMBusReadByte/SusiSMBusWriteByte
Word Data Read/Write — SusiSMBusReadWord/SusiSMBusWriteWord

We also support an additional API for probing:
m SusiSMBusScanDevice

The slave address is expressed as a 7-bit hex number between 0x00 to 0x7F, however
the actual addresses used for R/W are

8-bit write address = 7-bit address <<1 (left shift one) with LSB 0 (for
write)

8-bit read address = 7-bit address <<1 (left shift one) with LSB 1 (for read)
E.g. Given a 7-bit slave address 0x20, the write address is 0x40 and the read address
is 0x41.
Here in all APIs (except for SusiSMBusScanDevice), parameter
SlaveAddress is the 8-bit address and users don’t need to care about giving it as a
read or write address, since the actual R/W is taken care by the API itself, i.e. you
could even use a write address, say 0x41 for APIs with write operation and get the
right result, and vice versa.
SusiSMBusScanDevice is used to probe whether an address is currently used by
certain devices on a platform. You can find out which addresses are occupied by
scanning from 0x00 to Ox7f. For example, you could scan for occupied addresses and
avoid them when connecting a new device; or by probing before and after connecting
the new device, you could quickly know its address. The SlaveAddress 7
parameter given in this API is a 7-bit address.

Notice that we don’t recommend user to access the address AO~AF
due to it might hurt DRAM SPD value and cause RAM failed.

[IC functions

The APIs here cover 11C standard mode operations with a 7-bit device address:
m SusilICRead

m SusillCWrite

m SusillICWriteReadCombine

11C versus SMBus - compatibility

On platforms that do not have IIC but do have SMBus, a call to
SusilICAvailable returns SUSI_I1C_TYPE_SMBUS (2) . Users might be able
to use SMBus as a substitute; however, whether it’s with fully or partially supported
depends on the SMBus controller type.

14

In AMD platforms, we have implemented the SMBus driver to be totally IIC
standard mode compatible; users could use the 11C APIs implemented by the SMBus
controller with 11CType = SUSI_11C_TYPE_SMBUS to communicate with all
kinds of I11C devices.

In Intel and VIA’s platforms, the currently compatible protocols are

s SusillICRead withReadLen =1

m SusillCWritewithWriteLen=1

IIC devices with 7-bit slave addresses can also be scanned by
SusiSMBusScanDevice on all platforms that have SMBus support.

We are now working on more 1IC compatible APIs for Intel and VIA controllers.
These APIs will be supported soon.

For more details on platform 11C/SMBus support, please refer to Appendix A.

VGA Control (VC) functions

SusiVC- functions support VGA signal ON/OFF on all SUSI-enabled platforms and
also LCD brightness adjustment.

SusiVCScreenOn
SusiVCScreenOff
Susi1VCGetBrightRange
SusiVCGetBright
SusiVCSetBright

One application of SusiVCScreenOn and SusiVCScreenOff is to have the
display signal disabled when system idles after certain period of time to expand the
panel life span.

Hardware Monitoring (HWM) functions

Susi1HWM- functions support system health supervision by retrieving the values of
voltage, temperature and fan sensors. In some platforms, it is possible to control the
CPU/System fan speed. Use these functions cautiously.

SusiHWMAvai lable
SusiHWMGetFanSpeed
SusiHWMGetTemperature
SusiHWMGetVoltage
SusiHWMSetFanSpeed

FPGA SRAM functions

SUSIFPGAStorageAreaGetType
SUSIFPGAStorageAreaGetSize
SUSIFPGAStorageAreaRead
SUSIFPGAStorageAreaWrite
SUSIFPGAStorageAreaErase
SUSIFPGAStorageAreaFPGAConfig

FPGA 72 Bit GPIO functions

m SUSIFPGAStorageAreaFPGAConfig
s SUSIFPGAIOFPGACountEx

15

SUSIFPGAIOFPGAReadEx
SUSIFPGAIOFPGAReadMultiEx
SUSIFPGAIOFPGAWT iteEX
SUSIFPGAIOFPGAWTiteMultiEx

FPGA AES functions

m SUSIFPGASecurityFPGASetAESKey
s SUSIFPGASecurityFPGAGetAESKey
m SUSIFPGASecurityFPGAGenerateAESData

FPGA RNG functions

m SUSIFPGASecurityFPGAGenerateRandomNum

16

SUSI API Programmer’s Documentation

All APIs return the BOOL data type except Susi*Avai lable and some special
cases that are of type int. If any function call fails, i.e. a BOOL value of FALSE, or
an int value of -1, the error code can always be retrieved by an immediate call to
SusiGetLastError.

SusiDIInit

Initialize the Susi Library.
BOOL SusiDIlInit(void);

Parameters
None.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

An application must call SusiDIlInit before calling any other non SusiDII-
functions.

17

SusiDIIUnInit

Uninitialize the Susi Library.
BOOL SusiDIlIUnInit(void);

Parameters
None.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Before an application terminates, it must call SusiDIIUnInit if it has
successfully called SusiDIlInit. Calls to SusiDIlIInit and
SusiDIIUnInit can be nested but must be paired.

18

SusiDIIGetVersion

Retrieve the version numbers of SUSI Library.
void SusiDlIGetVersion(WORD *major, WORD *minor);

Parameters
major
[out] Pointerto a variable containing the major version number.
minor

[out] Pointer to a variable containing the minor version number.

Return Value
None.

Remarks
This function returns the version numbers of SUSI. It’s suggested to call this
function first and compare the numbers with the constants SUSI_LIB_VER_MJ

and SUSI_LIB_VER_MR in header file SUSI.H to insure the library compatibility.

19

SusiDIIGetLastError

This function returns the last error code value.
int SusiDlIGetLastError(void);

Parameters
None

Return Value
The code of error reason for the last function call with failure.

Remarks
You should call the SusiDIIGetLastError immediately when a function's
return value indicates failure.
The return error code will be either
Function Index Code + Library Error Code, or

Function Index Code + Driver Error Code
The Function Index Code distinguishes which API the error resulted from and the
library / Driver Error Code indicates the actual error type, i.e. if it is an error in a
library or driver. For a complete list of error codes, please refer to the Appendix.

20

SusiCoreAvailable

Check if Core driver is available.

int SusiCoreAvailable (void);

Parameters
None.

Return Value

Value Meaning
-1 The function fails.
0 The function succeeds; the platform does not support
SusiCore- APIs.
1 The function succeeds; the platform supports Core.
Remarks

After calling SusiDIIInit successfully, all Susi*Available functions are
used to check if the corresponding features are supported by the platform or not. So
it is suggested to call Susi*Avai lable before using any Susi*- functions.

21

SusiCoreGetBlIOSVersion

Get the current BIOS version.

BOOL SusiCoreGetBlOSVersion(TCHAR *BIOSVersion, DWORD
*size);

Parameters
BIOSVersion
[out] Pointerto an array in which the BIOS version string is returned.
size
[in/out]
Pointer to a variable that specifies the size, in TCHAR, of the array
pointed to by the BIOSVersion parameter.
If BIOSVersion is given as NULL, when the function returns, the
variable will contain the array size required for the BIOS version.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Call the function twice, first by giving BIOSVersion as NULL to get the array
size required for the string. Then allocate a TCHAR array with the size required
and give the array with its size as parameters to get the BIOS version. Note that the
BIOS version cannot be correctly retrieved if it’s a release version.

22

SusiCoreGetPlatformName

Get the current platform name.

BOOL SusiCoreGetPlatformName(TCHAR *PlatformName, DWORD
*size);

Parameters
PlatformName
[out] Pointerto an array in which the platform name string is returned.
size
[in/out]
Pointer to a variable that specifies the size, in TCHAR, of the array
pointed to by the PlatformName parameter.
If PlatformName is given as NULL, when the function returns, the
variable will contain the array size required for the platform name.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Call the function twice, first by giving PlatformName as NULL to get the array
size required for the string. Then allocate a TCHAR array with the size required
and give the array with its size as parameters to get the platform name. Note that
the platform name cannot be correctly retrieved if the BIOS is a release version.

23

SusiCoreAccessBootCounter

Access the boot counter. A boot counter is used to count the number of boot times.

BOOL SusiCoreAccessBootCounter (DWORD mode, DWORD OPFlag,
BOOL *enable, DWORD *value);

Parameters
mode

[in] The value can be either
ESCORE_BOOTCOUNTER_MODE_GET (0)
- To get information from counter.
ESCORE_BOOTCOUNTER_MODE_SET (1)
- To set information to counter.
OPFlag
[in] The operation flag can be the combination of
ESCORE_BOOTCOUNTER_STATUS (1)
- The operation is on the parameter enable
ESCORE_BOOTCOUNTER_VALUE (2)
- The operation is on the parameter value

enable
[in/out]
If OPFlag contains ESCORE_BOOTCOUNTER_STATUS (1):
When mode equals ESCORE_BOOTCOUNTER_MODE_GET(O),
after the function returns, enable will contain the status of the
counter: TRUE (enabled) or FALSE (disabled).
When mode equals ESCORE_BOOTCOUNTER_MODE_SET(1),
enable is a pointer to a variable that contains the status to set. Use
TRUE to start the counter or FALSE to stop.
value
[in/out]

If OPFlag contains ESCORE_BOOTCOUNTER_VALUE (2):

When mode equals ESCORE_BOOTCOUNTER_MODE_GET(O),
after the function returns, value will contain the reboot count.

When mode equals ESCORE_BOOTCOUNTER_MODE_SET(1),
value is a pointer to a variable that contains the reboot count to set.
Give a value 0 to clear the count or any other value to start from.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

In windows XP, the boot counter information is stored in the following registry

values:
HKEY_LOCAL_MACHINE \SYSTEM\SusiBootCounter\Enable
HKEY_LOCAL_MACHINE \SYSTEM\SusiBootCounter\BootTimes

In windows CE:
HKEY_CURRENT_USER\Software\Advantech\Susi\Core\BootCounter\Enable
HKEY_CURRENT_USER\Software\Advantech\Susi\Core\BootCounter\BootTimes

24

The information will be lost only if the registry values have been wiped out.
For a definition of boot counter flags, please refer to the Appendix.

25

SusiCoreAccessRunTimer

Access the run timer. A run timer is used to count the system running time.

BOOL SusiCoreAccessRunTimer(DWORD mode, PSSCORE_RUNTIMER
pRunTimer);

Parameters
mode
[in] The value can be either
ESCORE_BOOTCOUNTER_MODE_GET (0)
- Get the counter.
ESCORE_BOOTCOUNTER_MODE_SET (1)
- Set the counter.
pRunTimer
[in/out]
Pointer to a SSCORE_RUNTIMER structure to set or get the timer.
Please see next page for details of this structure.
Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

In windows XP, the information is stored in the following registry values:
HKEY_LOCAL_MACHINE\SY STEM\SusiRunTimer\Running
HKEY_LOCAL_MACHINE\SYSTEM\SusiRunTimer\Autorun
HKEY_LOCAL_MACHINE\SYSTEM\SusiRunTimer\ContinualOnTime
HKEY_LOCAL_MACHINE\SYSTEM\SusiRunTimer\TotalOnTime

In windows CE, they are in:
HKEY_CURRENT_USER\Software\Advantech\Susi\Core\RunTimer\Running
HKEY_CURRENT_USER\Software\Advantech\Susi\Core\RunTimer\Autorun
HKEY_CURRENT_USER\Software\Advantech\Susi\Core\RunTimer\ContinualOnTime
HKEY_CURRENT_USER\Software\Advantech\Susi\Core\RunTimer\TotalOnTime

The information will be lost only if the registry values have been wiped out.

For a detailed definition of the SSCORE_RUNTIMER structure, please refer to

next page.

26

SSCORE_RUNTIMER

This structure represents the run timer information.

typedef struct {
DWORD dwOPFlag;
BOOL isRunning;
BOOL i1sAutorun;
DWORD dwTimeContinual;
DWORD dwTimeTotal;
} SSCORE_RUNTIMER, *PSSCORE_RUNTIMER;

Members
dwOPFlag

The operation flag can be a combination of:
ESCORE_RUNTIMER_STATUS_RUNNING (1)
- The operation is on the member isRunning
ESCORE_RUNTIMER_STATUS_AUTORUN (2)
- The operation is on the member 1sAutorun
ESCORE_RUNTIMER_VALUE_CONT INUALON(4)
- The operation is on the member dwTimeContinual
ESCORE_RUNTIMER_VALUE_TOTALON(8)
- The operation is on the member dwTimeTotal
isRunning
TURE indicates the timer is running now, FALSE indicates not.
isAutorun
TRUE states the timer will start automatically upon startup, i.e. it will be running

each time when the system reboots.
dwTimeContinual

Specify the system continual-on time in minutes, i.e. the OS running time
without a system reboot. At reboot, it will be reset to 0.
dwTimeTotal

Specify the system total-on time in minutes, i.e. the total time accumulated while
the OS has been running.

27

SusiWDAwvailable

Check if the watchdog driver is available.

BOOL SusiWDAvailable(void);

Parameters
None.

Return Value

value Meaning
-1 The function fails.
0 The function succeeds; the platform does not support
SusiWD- APIs.
1 The function succeeds; the platform supports Watchdog.
Remarks

After calling SusiDIIInit successfully, all Susi*Available functions are
used to check if the corresponding features are supported by the platform or not.
We suggest Susi*Avai lable is called before using any Susi*- functions.

28

SusiWwDGetRange

Get the step, minimum and maximum values of the watchdog timer.

BOOL SusiWDGetRange(DWORD *minimum, DWORD *maximum,
DWORD *stepping);

Parameters
minimum
[out] Pointer to a variable containing the minimum timeout value in
milliseconds.
maximum
[out] Pointer to a variable containing the maximum timeout value in
milliseconds.
stepping
[out] Pointer to a variable containing the resolution of the timer in
milliseconds.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The values may vary from platform to platform; depending on the hardware
implementation of the watchdog timer. For example, if the minimum timeout is
1000, the maximum timeout is 63000, and the step is 1000, it means the watchdog
timeout will count 1, 2, 3 ... 63 seconds.

29

SusiWDSetConfig

Start watchdog timer with specified timeout value.

BOOL SusiWDSetConfig(DWORD delay, DWORD timeout);

Parameters
delay
[in] Specifies a value in milliseconds which will be added to “the first”
timeout period. This allows the application to have sufficient time to do
initialization before the first call to SusiWDTrigger and still be

protected by the watchdog.
timeout
[in] Specifies a value in milliseconds for the watchdog timeout.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure

Remarks

Once the watchdog has been activated, its timer begins to count down. The
application has to periodically call SusiWDTrigger to refresh the timer before it
expires, i.e. reload the watchdog timer within the specified timeout or the system
will reboot when it counts down to 0.

Actually a subsequent call to SusiWDTrigger equals a call to
SusiWDSetConfig with delay 0 and the original timeout value, so if you
want to change the timeout value, call SusiWDSetConfig with new timeout
value instead of SusiWDTrigger.

Use SusiWDGetRange to get the acceptable timeout values.

30

SusiWDTrigger

Reload the watchdog timer to the timeout value given in SusiWwDSetConfig to
prevent the system from rebooting.

BOOL SusiWDTrigger(void);

Parameters
None

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
A watchdog protected application has to call SusiWDTrigger continuously to
indicate that it is still working properly and prevent a system restart. The first call
to SusiWDTrigger in the middle of a delay resulting from a previous call to
SusiWDSetConTig causes the delay timer to be canceled immediately and starts
the watchdog timer countdown from the timeout value. It is always a good choice
for users to have a longer delay time in SusiWDSetConTfig.

31

SusiWDDisable

Disable the watchdog and stop its timer countdown.

BOOL SusiWDDisable(void);

Parameters
None

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
If watchdog protection is no longer required by an application, it can call
SusiWDDisable to disable the watchdog. A call to SusiWDDisable in the
middle of a delay resulting from a previous call to SusiWDSetConfig causes the
delay timer to be canceled immediately and stops watchdog timer countdown. Only
a few hardware implementations in which the watchdog timer cannot be stopped
once it has been activated, will return with FALSE.

32

SusilOAvailable

Check if GPIO driver is available.
int SusiCoreAvailable (void);

Parameters
None.

Return Value

value Meaning
-1 The function fails.
0 The function succeeds; the platform does not support
SusilO- APls.
1 The function succeeds; the platform supports GPI10.
Remarks

After calling SusiDIIInit successfully, all Susi*Available functions are
used to check if the corresponding features are supported by the platform or not. It
is suggested to call Susi*Avai lable before using any Susi*- functions.

33

SusilOCountEx

Query the current number of input and output pins.

BOOL Susil0CountEx(DWORD *inCount, DWORD *outCount)

Parameters
inCount
[out] Pointer to a variable in which this function returns the count of input
pins.
outCount
[out] Pointer to a variable in which this function returns the count of output
pins.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The number of GPIO pins equals the number of input pins plus the number of
output pins. The number of input and output pins may vary in accordance with the
current pin direction.

34

SusilOQueryMask

Query the GPIO mask information.
BOOL Susil0QueryMask(DWORD flag, DWORD *Mask)

Parameters
flag
[in] The value given to indicate the type of mask to retrieve can be one of
the following values:
Static masks
ESIO_SMASK_PIN_FULL (1)
ESI10_SMASK CONFIGURABLE (2)
Dynamic masks
ES10_DMASK_DIRECTION (0x20)
Mask
[out] Pointerto a variable in which this function returns the queried mask.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
A mask is expressed as a series of binary digits. Each bit corresponds to a pin (bit
0 for pin 0, bit 1 for pin 1, bit 2 for pin 2 ...), depending on the mask type:
A bit value 1 stands for a pin with
1. Input direction
2. Status HIGH
3. Direction changeable.
Or a bit value O stands for a pin with
1. Output direction
2. Status LOW
3. Direction unchangeable

Here are the definitions for masks:
m ESIO _SMASK PIN_FULL
- If there are total 8 GPIO pins (GPIO 0 ~ 7) in a platform, the full pin mask
is OXFF, or in binary 11111111, i.e. the number of 1s corresponds to the
number of pins.
m ESIO_SMASK_CONFIGURABLE
- This is the mask to indicate which pins have changeable directions. If all
the 8 pins are changeable, the mask would be OxFF.
m ESIO_DMASK DIRECTION
- The current direction of pins. If the mask is OXAA, or in binary 10101010,
it means the even pins are output pins and the odd pins are input pins.

35

SusilOSetDirection

Set direction of one GPIO pin as input or output.

BOOL SusilOSetDirection(BYTE PinNum, BYTE 10, DWORD
*PinDirMask) ;

Parameters
PinNum
[in] Specifies the GPIO pin to be changed, ranging from 0 ~ (total number of
GPI0O pins minus 1).
10
[in] Specifies the pin direction to be set.

PinDirMask
[out] Pointer to a variable in which the function returns the latest direction
mask after the pin direction is set.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Use an 10 value of 1 to set a pin as an input or 0 to set a pin as an output.
The function can only set the direction of one of the pins that are direction
configurable. If the pin number specified is an invalid pin or a pin that can only
be configured as an input, the function call will fail and return FALSE.

36

SusilOSetDirectionMulti

Set directions of multiple pins at once.

BOOL SusilOSetDirectionMulti(DWORD TargetPinMask, DWORD
*PinDirMask) ;

Parameters
TargetPinMask

[in] Specifies the mask of GPIO output pins to be written.

PinDirMask
[in/out]
Specifies the directions of pins to be set in a bitwise-ORed manner.
After the function call returns TRUE, it contains the latest direction
mask after set.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
For example, if you set to the directions of GPIO pin 0, 1, 6, 7. Give parameter
TargetPinMask with a value 11000011, or 0xC3. Bit 0 stand for GPIO 0, bit 1
stand for GPIO 1, and so on.
If you want to set pin 0 as input, pin 1 as output, pin 6 as input and pin 7 as output.
Give value in parameter PinDirMask as 01XXXXO01, X is for don’t care, you
could simply assign a 0 for it, i.e. O0x41.

37

SusilOReadEXx

Read current status of one GPIO input or output pin.
BOOL SusilOReadEx(BYTE PinNum, BOOL *status)

Parameters
PinNum
[in] Specifies the GPIO pin demanded to be read, ranging from 0 ~ (total

number of GPIO pins minus 1).
status

[out] Pointerto a variable in which the pin status returns.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
If the pin is in status high, the value got in status will be 1. If the pin is in status
low, it will be zero. The function is capable of reading the status of either an input
pin or an output pin.

38

SusilOReadMultiEx

Read current statuses of multiple pins at once regardless of the pin directions.

BOOL SusilOReadMultiEx(DWORD TargetPinMask, DWORD
*StatusMask) ;

Parameters
TargetPinMask

[in] Specifies the mask of GPIO pins demanded to be read.

StatusMask
[out] Statuses of pins in Bitwise-ORed. For pins that are not specified in
TargetPinMask, the related bit value is invalid.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
For example, if you want to read the statuses of GPIO pin 0, 1, 6, 7. Give
parameter TargetPinMask with a value 11000011, or OxC3. Bit 0 stand for
GPIO 0, bit 1 stand for GPIO 1, and so on. Again, if the pin is in status high, the
value got in relevant bit of StatusMask will be 1. If the pin is in status low, it
will be zero.

39

SusilOWriteEx

Set one GPIO output pin as status high or low.
BOOL SusilOWriteEx(BYTE PinNum, BOOL status);

Parameters
PinNum
[in] Specifies the GPIO pin demanded to be written, ranging from 0 ~ (total
number of GPIO pins minus 1).
status

[in] Specifies the GPIO status to be written.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The function can only set the status of one of the output pins. If the pin number
specified is an input pin or an invalid pin, the function call will fail and return
with FALSE. A status with 1 to set the pin as output high, 0 to set the pin as
output low.

40

SusilOWriteMultiEx

Set statuses of multiple output pins at once.

BOOL SusilOWriteMultiEx(DWORD TargetPinMask, DWORD
StatusMask) ;

Parameters
TargetPinMask
[in] Specifies the mask of GPIO output pins demanded to be written.

StatusMask
[in] Statuses of pins to be set in Bitwise-ORed. For pins that are not
specified in TargetPinMask, the related bit value is invalid.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
For example, if you want to write the statuses of GPIO output pin 0, 1, 6, 7. Give
parameter TargetPinMask with a value 11000011, or OxC3. Bit 0 stand for
GPIO 0, bit 1 stand for GPIO 1, and so on.
If you want to set pin 0 as high, pin 1 as low, pin 6 as high and pin 7 as low. Give
parameter StatusMask with a value 01XXXX01, X is for don’t care pin, you
could simply assign a O for it, i.e. 0x41.

4

Susi64BitslOQueryMask

Query the GPIO mask information.
BOOL Susi64Bitsl0QueryMask(DWORD flag, UINT64 *Mask)

Parameters
flag
[in] The value given to indicate the type of mask to retrieve can be one of

the following values:
Static masks
ESIO_SMASK_PIN_FULL (1)
ES10_SMASK_CONFIGURABLE (2)
Dynamic masks
ES10_DMASK_DIRECTION (0x20)

Mask

[out] Pointerto a variable in which this function returns the queried mask.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
A mask is expressed as a series of binary digits. Each bit corresponds to a pin (bit
0 for pin 0, bit 1 for pin 1, bit 2 for pin 2 ...), depending on the mask type:
A bit value 1 stands for a pin with
4. Input direction
5. Status HIGH
6. Direction changeable.
Or a bit value O stands for a pin with
4. Output direction
5. Status LOW
6. Direction unchangeable

Here are the definitions for masks:
m ESIO _SMASK PIN_FULL
- If there are total 8 GPIO pins (GPIO 0 ~ 7) in a platform, the full pin mask
is OXFF, or in binary 11111111, i.e. the number of 1s corresponds to the
number of pins.
m ESIO_SMASK_CONFIGURABLE
- This is the mask to indicate which pins have changeable directions. If all
the 8 pins are changeable, the mask would be OxFF.
m ESIO_DMASK DIRECTION
- The current direction of pins. If the mask is OXAA, or in binary 10101010,
it means the even pins are output pins and the odd pins are input pins.

42

Susi64BitslOSetDirection

Set direction of one GPIO pin as input or output.

BOOL Susi64Bitsl0SetDirection(ULONG PinNum, BYTE 10,
UINT64 *PinDirMask);

Parameters
PinNum
[in] Specifies the GPIO pin to be changed, ranging from 0 ~ (total number of
GPI0O pins minus 1).
10
[in] Specifies the pin direction to be set.

PinDirMask
[out] Pointer to a variable in which the function returns the latest direction
mask after the pin direction is set.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Use an 10 value of 1 to set a pin as an input or 0 to set a pin as an output.
The function can only set the direction of one of the pins that are direction
configurable. If the pin number specified is an invalid pin or a pin that can only
be configured as an input, the function call will fail and return FALSE.

43

Susi64BitslOSetDirectionMulti

Set directions of multiple pins at once.

BOOL Susi64BitslOSetDirectionMulti(UINT64 TargetPinMask,
UINT64 *PinDirMask);

Parameters
TargetPinMask

[in] Specifies the mask of GPIO output pins to be written.

PinDirMask
[in/out]
Specifies the directions of pins to be set in a bitwise-ORed manner.
After the function call returns TRUE, it contains the latest direction
mask after set.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
For example, if you set to the directions of GPIO pin 0, 1, 6, 7. Give parameter
TargetPinMask with a value 11000011, or 0xC3. Bit 0 stand for GPIO 0, bit 1
stand for GPIO 1, and so on.
If you want to set pin 0 as input, pin 1 as output, pin 6 as input and pin 7 as output.
Give value in parameter PinDirMask as 01XXXXO01, X is for don’t care, you
could simply assign a 0 for it, i.e. O0x41.

44

Susi64BitslOReadMultiEx

Read current statuses of multiple pins at once regardless of the pin directions.

BOOL Susi64BitslOReadMultiEx(DWORD TargetPinMask, DWORD
*StatusMask) ;

Parameters
TargetPinMask

[in] Specifies the mask of GPIO pins demanded to be read.

StatusMask
[out] Statuses of pins in Bitwise-ORed. For pins that are not specified in
TargetPinMask, the related bit value is invalid.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
For example, if you want to read the statuses of GPIO pin 0, 1, 6, 7. Give
parameter TargetPinMask with a value 11000011, or OxC3. Bit 0 stand for
GPIO 0, bit 1 stand for GPIO 1, and so on. Again, if the pin is in status high, the
value got in relevant bit of StatusMask will be 1. If the pin is in status low, it
will be zero.

45

Susi64BitslOWriteMultiEx

Set statuses of multiple output pins at once.

BOOL Susi64BitslOWriteMultiEx(DWORD TargetPinMask, DWORD
StatusMask) ;

Parameters
TargetPinMask

[in] Specifies the mask of GPIO output pins demanded to be written.

StatusMask
[in] Statuses of pins to be set in Bitwise-ORed. For pins that are not
specified in TargetPinMask, the related bit value is invalid.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
For example, if you want to write the statuses of GPIO output pin 0, 1, 6, 7. Give
parameter TargetPinMask with a value 11000011, or OxC3. Bit 0 stand for
GPIO 0, bit 1 stand for GPIO 1, and so on.
If you want to set pin 0 as high, pin 1 as low, pin 6 as high and pin 7 as low. Give
parameter StatusMask with a value 01XXXX01, X is for don’t care pin, you
could simply assign a O for it, i.e. 0x41.

46

SusiSMBusAvailable

Check if SMBus driver is available.

int SusiSMBusAvailable(void);

Parameters
None.

Return Value

value Meaning
-1 The function fails.
0 The function succeeds; the platform does not support
SusiSMbus- APIs.
1 The function succeeds; the platform supports SMBus.
Remarks

After calling SusiDIIInit successfully, all Susi*Available functions are
use to check if the corresponding features are supported by the platform or not. So
it is suggested to call Susi*Avai lable before using any Susi*- functions.

47

SusiSMBusScanDevice

Scan if the address is taken by one of the slave devices currently connected to the
SMBus.

int SusiSMBusScanDevice(BYTE SlaveAddress 7)
Parameters
SlaveAddress
[in] Specifies the 7-bit device address, ranging from 0x00 — Ox7F.

Return Value

value Meaning

-1 The function fails.

0 The function succeeds; the address is not occupied.

1 The function succeeds; there is a device to this address.
Remarks

There could be as much as 128 devices connected to a single SMBus. For more
information about how to use this API, please refer to “Programming Overview”
part “SMBus functions”.

48

SusiSMBusReadQuick

Turn a SMBus device function on (off) or enable (disable) a specific device mode.
BOOL SusiSMBusReadQuick(BYTE SlaveAddress);

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.
Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress
could be ignored.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
For more information about how to use this API, please refer to “Programming
Overview”, part “SMBus functions”.

49

SusiSMBusWriteQuick

Turn a SMBus device function off (on) or disable (enable) a specific device mode.
BOOL SusiSMBusWriteQuick(BYTE SlaveAddress);

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.
Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress
could be ignored.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
For more information about how to use this API, please refer to “Programming
Overview”, part “SMBus functions”.

50

SusiSMBusReceiveByte

Receive information in a byte from the target slave device in the SMBus.

BOOL SusiSMBusReceiveByte(BYTE SlaveAddress, BYTE
*Result);

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.

Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress
could be ignored.
Result

[out] Pointer to a variable in which the function receives the byte
information.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

A simple device may have information that the host needs to be received in the
parameter Result.

For more information about how to use this API, please refer to “Programming
Overview”, part “SMBus functions”.

51

SusiSMBusSendByte

Send information in a byte to the target slave device in the SMBus.
BOOL SusiSMBusSendByte(BYTE SlaveAddress, BYTE Result);

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.
Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress

could be ignored.
Result

[in] Specifies the byte information to be sent.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
A simple device may recognize its own slave address and accept up to 256 possible
encoded commands in the form of a byte given in the parameter Resul t.

For more information about how to use this API, please refer to “Programming
Overview”, part “SMBus functions”.

52

SusiSMBusReadByte

Read a byte of data from the target slave device in the SMBus.

BOOL SusiSMBusReadByte(BYTE SlaveAddress, BYTE
RegisterOffset, BYTE *Result);

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.
Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress
could be ignored.

RegisterOffset
[in] Specifies the offset of the device register to read data from.
Result

[out] Pointer to a variable in which the function reads the byte data.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
For more information about how to use this API, please refer to “Programming
Overview”, part “SMBus functions”.

53

SusiSMBusWriteByte

Write a byte of data to the target slave device in the SMBus.

BOOL SusiSMBusWriteByte(BYTE SlaveAddress, BYTE
RegisterOffset, BYTE Result);

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.
Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress
could be ignored.

RegisterOffset
[in] Specifies the offset of the device register to write data to.
Result

[in] Specifies the byte data to be written .

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
For more information about how to use this API, please refer to “Programming
Overview”, part “SMBus functions”.

54

SusiSMBusReadWord

Read a word (2 bytes) of data from the target slave device in the SMBus.

BOOL SusiSMBusReadWord(BYTE SlaveAddress, BYTE
RegisterOffset, WORD *Result);

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.
Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress
could be ignored.

RegisterOffset
[in] Specifies the offset of the device register to read data from.
Result

[out] Pointer to a variable in which the function reads the word data.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The first byte read from slave device will be placed in the low byte of Result,
and the second byte read will be placed in the high byte.
For more information about how to use this API, please refer to “Programming

Overview”, part “SMBus functions”.

55

SusiSMBusWriteWord

Write a word (2 bytes) of data to the target slave device in the SMBus.

BOOL SusiSMBusWriteWord(BYTE SlaveAddress, BYTE
RegisterOffset, WORD Result);

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.
Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress
could be ignored.

RegisterOffset
[in] Specifies the offset of the device register to write data to.
Result

[in] Specifies the word data to be written .

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The low byte of Result will be send to the slave device first and then the high
byte. For more information about how to use this API, please refer to
“Programming Overview”, part “SMBus functions”

56

SusillICAvailable

Check if I°C driver is available and also get the 11C type supported.
int SusillCAvailable();

Parameters
None.

Return Value

value Meaning
-1 The function fails.
0 The function succeeds; the platform does not

support any SusillC - APlIs.

SUSI_I1IC_TYPE_PRIMARY (1) | The function succeeds; the platform supports
only primary IIC.

SUSI_I1IC_TYPE_SMBUS (2) The function succeeds; the platform supports
only SMBus implemented IIC.

SUSI_I1IC_TYPE_BOTH (3) The function succeeds; the platform supports
both primary I1C and SMBus IIC.

Remarks
After calling SusiDIIInit successfully, all Susi*Available functions are
use to check if the corresponding features are supported by the platform or not. So
it is suggested to call Susi*Avai lable before using any Susi*- functions.

57

SusillICRead

Read bytes of data from the target slave device in the I°C bus.

SUSI_API BOOL SusilICRead(DWORD 11CType, BYTE SlaveAddress,
BYTE *ReadBuf, DWORD ReadLen);

Parameters
11CType
[in] Specifies the I°C type, the value can either be
SUSI1_I11C_TYPE_PRIMARY (1)
SUSI_II1C_TYPE_SMBUS (2)
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 — OXFF.
Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress

could be ignored.
ReadBuf

[out] Pointer to a variable in which the function reads the bytes of data.
ReadLen

[in] Specifies the number of bytes to be read.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Call SusillCAvailable first to make sure the support I°C type. For more
information about how to use this API, and the relationship between IIC and
SMBus, please refer to “Programming Overview”, parts “SMBus functions” to

“IIC versus SMBus — compatibility”

58

SusilICWrite

Write bytes of data to the target slave device in the I°C bus.

BOOL SusilICWrite(DWORD 1ICType, BYTE SlaveAddress, BYTE
*WriteBuf, DWORD WriteLen);

Parameters
11CType
[in] Specifies the I°C type, the value can either be
SUSI1_I11C_TYPE_PRIMARY (1)
SUSI_II1C_TYPE_SMBUS (2)
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 — OXFF.
Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress

could be ignored.
WriteBuf

[in] Pointer to a byte array which contains the bytes of data to be written.
WritelLen

[in] Specifies the number of bytes to be written.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Call SusillCAvailable first to make sure the support I°C type. For more
information about how to use this API, and the relationship between I1IC and
SMBus, please refer to “Programming Overview”, parts “SMBus functions” to

“IIC versus SMBus — compatibility”.

59

SusilICWriteReadCombine

A sequential operation to write bytes of data followed by bytes read from the target
slave device in the I°C bus.

BOOL SusillCWriteReadCombine(DWORD 11CType, BYTE
SlaveAddress, BYTE *WriteBuf, DWORD WriteLen, BYTE *ReadBuf,
DWORD ReadLen);

Parameters
11CType
[in] Specifies the I°C type, the value can either be
SUSI_11C_TYPE_PRIMARY (1)
SUSI_ITIC_TYPE_SMBUS (2)
SlaveAddress
[in] Specifies the 8-bit device address, ranging from 0x00 — OXFF.
Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress
could be ignored.
WriteBuf
[in] Pointer to a byte array which contains the bytes of data to be written.
WritelLen
[in] Specifies the number of bytes to be written.
ReadBuf
[out] Pointer to a variable in which the function reads the bytes of data.
ReadLen
[in] Specifies the number of bytes to be read.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The function is mainly for EEPROM I°C devices - the bytes written first are used to
locate to a certain address in ROM, and the following bytes read will retrieve the
data bytes starting from this address.
Call SusillCAvailable first to make sure the support I°C type. For more
information about how to use this API, and the relationship between IIC and
SMBus, please refer to “Programming Overview”, parts “SMBus functions” to

“IIC versus SMBus — compatibility”
SusiVCAvailable

Check if VC driver is available and also get the feature support information.
BOOL SusiVCAvailable(void);

Parameters
None.

Return Value

60

value Meaning
-1 The function fails.
0 The function succeeds; the platform

does not support any SusiVC- APIs.

SUSI_VC_BRIGHT_CONTROL_AVAILABLE (1)

The function succeeds; the platform
supports only brightness APIs.

SUSI_VC_VGA_CONTROL_AVAILABLE (2)

The function succeeds; the platform
supports only screen on/off APIs.

SUSI_VC_BOTH_AVAILABLE (3)

The function succeeds; the platform
supports all SusiVC- APIs.

Remarks

After calling SusiDI I Init successfully, all Susi*Avai lable functions are
use to check if the corresponding features are supported by the platform or not. So
it is suggested to call Susi*Avai lable before using any Susi*-

functions.

61

SusiVCGetBrightRange

Get the step, minimum and maximum values in brightness adjustment.

BOOL SusiVCGetBrightRange(BYTE *minimum, BYTE *maximum,
BYTE *stepping);

Parameters
minimum
[out] Pointerto a variable to get the minimum brightness value.
max imum
[out] Pointerto a variable to get the maximum brightness value.
stepping
[out] Pointer to a variable to get the step of brightness up and down

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Call SusiVCAvailable firstto make sure if the brightness control is available.
The values may vary from platform to platform; depend on the hardware
implementations of brightness control. For example, if minimum is 0, maximum is
255, and stepping is 5, it means the brightness can be 0, 5, 10, ..., 255.

62

SusiVCGetBright

Get the current panel brightness.

BOOL SusiVCGetBright(BYTE *brightness);
Parameters

brightness

[out] Pointer to a variable in which this function returns the brightness.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Call SusiVCAvailable firstto make sure if the brightness control is available.

63

SusiVCSetBright

Set current panel brightness.

BOOL SusiVCSetBright(BYTE brightness);

Parameters
brightness

[in] Specifies the brightness value to be set.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Call SusiVCAvai lable first to make sure if the brightness control is available.
In some implementations, the higher the brightness value, the higher the voltage fed
to the panel. So please make sure the voltage toleration of your panel prior to the
API use.

64

SusiVCScreenOn

Turn on VGA display signal.
BOOL SusiVCScreenOn(void);

Parameters
None.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The function enables both the LCD and CRT display signals.

65

SusiVCScreenOff

Turn off VGA display signal.

BOOL SusiVCScreenOff(void);

Parameters
None.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The function disables both the LCD and CRT display signals.

66

SusiHWMAvailable

Check if the hardware monitor driver is available.

int SusiHWMAvailable();

Parameters
None.

Return Value

value Meaning
-1 The function fails.
0 The function succeeds; the platform does not support
SusiHWM- APlIs.
1 The function succeeds; the platform supports HWM.
Remarks

After calling SusiDIIInit successfully, all Susi*Available functions are
use to check if the corresponding features are supported by the platform or not. So
it is suggested to call Susi*Avai lable before using any Susi*- functions.

67

SusiHWMGetFanSpeed

Read the current value of one of the fan speed sensors, or get the types of available
Sensors.

BOOL SusiHWMGetFanSpeed(WORD fanType, WORD *retval, WORD
*typeSupport = NULL);

Parameters
fantype
[in] Specifies a fan speed sensor to get value from. It can be one of the
flags
FCPU (1) -CPU Fan
FSYS (2) - System/ Chassis fan
retval

[out] Pointto a variable in which this function returns the fan speed in RPM

Typesupport
[out]
If the value is specified as a pointer (non-NULL) to a variable, it will
return the types of available sensors in flags bitwise-ORed
Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Call the function first with a non-NULL typesupport to know the available fan
sensors and a following call to get the fan speed required.

68

SusiHWMGetTemperature

Read the current value of one of the temperature sensors, or get the types of
available sensors.

BOOL SusiHWMGetTemperature(WORD tempType, float *retval,
WORD *typeSupport = NULL);

Parameters
tempType
[in] Specifies a temperature sensor to get value from. It can be one of the
flags
TCPU (1) - CPU temperature
TSYS (2) - System/ambient temperature
retval
[out] Point to a variable in which this function returns the temperature in
Celsius.
Typesupport
[out]

If the value is specified as a pointer (non-NULL) to a variable, it will
return the types of available sensors in flags bitwise-ORed

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Call the function first with a non-NULL typesupport to know the available

temperature sensors and a following call to get the temperature required.

69

SusiHWMGetVoltage

Read the current value of one of the voltage sensors, or get the types of available
Sensors.

BOOL SusiHWMGetVoltage(DWORD voltType, Tloat *retval,
DWORD *typeSupport = NULL);

Parameters
voltType
[1n] Specifies a voltage sensor to get value from. It can be one of the flags
VCORE (1<<0)

V25 (1<<1)
V33 (1<<2)
V50 (1<<})
V120 (1<<4)
VSB (1<<b)

VBAT (1<<6)
VN50 (1<<7)
VN120 (1<<8)
VTIT (1<<9)
retval
[out] Pointto a variable in which this function returns the voltage in Volt.
Typesupport
[out]
If the value is specified as a pointer (non-NULL) to a variable, it will
return the types of available sensors in flags bitwise-ORed

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Call the function first with a non-NULL typesupport to know the available fan
sensors and a following call to get the voltage required.

70

SusiHWMSetFanSpeed

Control the speed of one of the fans, or get the types of available fans.

BOOL SusiHWMSetFanSpeed(WORD fanType, BYTE setval, WORD
*typeSupport = NULL);

Parameters
fantype
[in] Specifies a fan to be controlled. It can be one of the flags
FCPU (1) -CPU Fan
FSYS (2) - System/ Chassis fan
setval
[in] Specifies the value to set, ranging from 0 to 255.

Typesupport
[out]
If the value is specified as a pointer (non-NULL) to a variable, it will
return the types of available fans in flags bitwise-ORed
Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The fan speed is controlled by Pulse Width Modulation (PWM):
Duty cycle (%) = (setval/ 255) * 100%
And the default duty cycle is set to 100%, i.e. the maximal fan speed.
Call the function first with a non-NULL typesupport to know the available fan
sensors and a following call to set the fan speed.

71

SUSIFPGA API Programmer’s Documentation

All APIs return the BOOL data type except SUSIFPGA*Avai lable and some
special cases that are of type int. If any function call fails, i.e. a BOOL value of
FALSE, or an int value of -1, the error code can always be retrieved by an

immediate call to SUSIFPGAGetLastError.

SUSIFPGADIIInit

Initialize the SUSIFPGA Library.

BOOL SUSIFPGADIIINnit(void);

Parameters
None.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

An application must call SUSIFPGADIIInit before calling any other non
SUSIFPGADII- functions.

72

SUSIFPGADIIUNInit

Uninitialize the SUSIFPGA Library.
BOOL SUSIFPGADIIUnInit(void);

Parameters
None.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Before an application terminates, it must call SUSIFPGADIIUnInit if it has
successfully called SUSIFPGADINInit. Calls to SUSIFPGADININnit and
SUSITFPGADI IUnInit can be nested but must be paired.

73

SUSIFPGAStorageAreaGetType

To get types of storage areas a platform supports.

BOOL SUSIFPGAStorageAreaGetType (DWORD *dwType);

Parameters
dwType
[in] Pointer to a variable to get the type of storage area supported in a
platform.
Return Value
value Meaning
0 None
1 FPGA SRAM
2 EEPROM
4 CMOS

74

SUSIFPGAStorageAreaGetSize

To get size of storage areas a platform supports.

BOOL SUSIFPGAStorageAreaGetsize (DWORD dwType, DWORD
*size);

Parameters
dwType
[in] Pointer to a variable to get the type of storage area supported in a
platform.
Size

[out] Pointerto a variable to get the size of storage area

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

75

SUSIFPGAStorageAreaRead

Read storage area data

BOOL SUSIFPGAStorageAreaRead (DWORD dwType, DWORD dwOffset,
BYTE *pbData, DWORD dwLen);

Parameters
dwType
[in] Pointer to a variable to get the type of storage area supported in a
platform.

dwOffset
[in] Zero based offset into the storage area

pdData
[out] Pointer to location that will receive the bytes

dwLen
[in] Number of bytes to read

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

76

SUSIFPGAStorageAreaWrite

BOOL SUSIFPGAStorageAreaWrite (DWORD dwType, DWORD
dwOffset, BYTE *pbData, DWORD dwLen);

Parameters
dwType

[in] Pointer to a variable to get the type of storage area supported in a
platform.

dwOffset
[in] Zero based offset into the storage area

pdData
[out] Pointer to location that will receive the bytes

dwLen
[in] Number of bytes to write

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

77

SUSIFPGAStorageAreaErase

BOOL SUSIFPGAStorageAreaErase(DWORD dwType, DWORD dwOffset,
DWORD dwLen);

Parameters
dwType

[in] Pointer to a variable to get the type of storage area supported in a
platform.

dwOffset
[in] Zero based offset into the storage area

dwLen
[in] Number of bytes to erase

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

78

SUSIFPGAStorageAreaFPGAConfig

A structure of FPGA configuration.

BOOL SUSIFPGAStorageAreaAccessFPGAConTig(DWORD
mode ,PSSFPGA_SRAM pSRAM)

Parameters
mode

[in] The value can be either
ESCORE_BOOTCOUNTER_MODE_GET (0)
- Get information from counter.
ESCORE_BOOTCOUNTER_MODE_SET (1)
- Set information to counter.

PSRAM
[in/out]
Pointer to a SSFPGA_SRAM structure to set or get the SRAM
information in FPGA, please see next page.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

79

SRAM

This structure represents the SRAM information.

Typedef struct {

BOOL isCRC;

BOOL isDisableAES;

BOOL isMirror;

} SSFPGA_SRAM, *PSSFPGA_SRAM;

Members
isCRC
0 Disable
1 Enable
i1SAES
0 False; SRAM data is Encryption.
1 True; SRAM data is Decryption.
isMirror
0 Disable
1 Enable
Remarks

The storage area size would be changed if you enable CRC or Mirror function.
Please make sure to get storage size again with
SUSIFPGAStorageAreaGetsize after configure the FPGA.

80

SUSIFPGAIOFPGACountEX

Query the current number of input and output pins.

BOOL SUSIFPGAI0OFPGACountEx(DWORD *inCount, DWORD
*outCount);

Parameters
inCount
[out] Pointer to a variable in which this function returns the count of input

pins.

outCount
[out] Pointer to a variable in which this function returns the count of output
pins.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The number of total GP1O pins equals the number of input pins plugs the number of
output pins. With this constant pin number, the numbers of input and output pins
may vary in accordance with current pin direction.

81

SUSIFPGAIOFPGAReadEXx

Read current status of one FPGA GPIO input or output pin.
BOOL SUSIFPGAIOFPGAReadEX(BYTE PinNum, BOOL *status);

Parameters
PinNum

[in] Specifies the GPIO pin demanded to be read, ranging from 0 ~ (total
number of GPIO pins minus 1).

status
[out] Pointer to a variable in which the pin status returns.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
If the pin is in status high, the value got in status will be 1. If the pin is in status
low, it will be zero. The function is capable of reading the status of either an input
pin or an output pin.

82

SUSIFPGAIOFPGAReadMultiEx

Read current statuses of multiple pins at once regardless of the pin directions.

BOOL SUSIFPGAIOFPGAReadMultiEX(UINT64 PinMaskHi, UINT64
PinMaskLo, UINT64 *StatusMaskHi, UINT64 *StatusMaskLo);

Parameters
PinMaskHi

[in] GPIO Pin64 to Pin71 demanded to be read.

PinMaskLo
[in] GPIO Pin0 to Pin63 demanded to be read.

StatusMaskHi
[out] Statuses of pins in Bitwise-ORed. For pins that are not specified in
PinMaskHi, the related bit value is invalid.

StatusMaskLo
[out] Statuses of pins in Bitwise-ORed. For pins that are not specified in
PinMaskLo, the related bit value is invalid.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
For example, if you want to read the statuses of GPIO pin 0, 1, 6, 7. Give
parameter PinMaskLo with a value 11000011, or 0xC3. Bit 0 stand for GP10O 0,
bit 1 stand for GPIO 1, and so on. Again, if the pin is in status high, the value got
in relevant bit of StatusMaskLo will be 1. If the pin is in status low, it will be
zero.

83

SUSIFPGAIOFPGAWTiteEx

Set one GPIO output pin as status high or low.
BOOL SUSIFPGAIOFPGAWriteExX(BYTE PinNum, BOOL status);

Parameters
PinNum
[in] Specifies the GPIO pin demanded to be written, ranging from 0 ~ (total
number of GPIO pins minus 1).
status

[in] Specifies the GPIO status to be written.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The function can only set the status of one of the output pins. If the pin number
specified is an input pin or an invalid pin, the function call will fail and return
with FALSE. A status with 1 to set the pin as output high, 0 to set the pin as
output low.

84

SUSIFPGAIOFPGAWTriteMultiEx

Set statuses of multiple output pins at once.

BOOL SUSIFPGAIOFPGAWriteMultiEX(UINT64 PinMaskHi, UINT64
PinMaskLo, UINT64 StatusMaskHi, UINT64 StatusMaskLo);

Parameters
PinMaskHi

[in] GPIO Pin64 to Pin71 demanded to be written.

PinMaskLo
[in] GPIO Pin0 to Pin63 demanded to be written.

StatusMaskHi
[out] Statuses of pins in Bitwise-ORed. For pins that are not specified in
PinMaskHi, the related bit value is invalid.

StatusMaskLo
[out] Statuses of pins in Bitwise-ORed. For pins that are not specified in
PinMaskLo, the related bit value is invalid.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
For example, if you want to write the statuses of GPIO output pin 0, 1, 6, 7. Give
parameter PinMaskLo with a value 11000011, or 0xC3. Bit 0 stand for GPIO 0,
bit 1 stand for GPIO 1, and so on.
If you want to set pin 0 as high, pin 1 as low, pin 6 as high and pin 7 as low. Give
parameter StatusMaskLo with a value 01XXXXO01, X is for don’t care pin, you
could simply assign a O for it, i.e. 0x41.

85

SUSIFPGASecurityFPGASetAESKey

Set length 16 bytes AES Key

BOOL SUSIFPGASecurityFPGASetAESKey(BYTE *pbKey);
Parameters
pdKey
[in] Pointer to 16 bytes array which contains the bytes of Key to be written.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

86

SUSIFPGASecurityFPGAGetAESKey

Get length 16 bytes AES Key

BOOL SUSIFPGASecurityFPGAGetAESKey(BYTE *pbKey);
Parameters
pbKey
[out] Pointerto 16 bytes array which contains the bytes of Key to be read.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

87

SUSIFPGASecurityFPGAGenerateAESData

Generate 16 bytes AES Data

BOOL SUSIFPGASecurityFPGAGenerateAESData (BYTE *pbData);
Parameters
pbData

[out] Pointerto a 16 bytes array which contains the bytes of data to be read.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

88

SUSIFPGASecurityFPGAGenerateRandomNum

Generate a random number

BOOL SUSIFPGASecurityFPGAGenerateRandomNum (DWORD *num);
Parameters

num

[out] Pointerto a variable in which get the random number

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

89

Appendix A - GPIO Information

Look up the table for the GPIO pins assignment and the default pins direction for a
platform. E.g. AIMB-330(CN19) means that the platform name is AIMB-330 and its
GPIO pins are located in CN19 on the board.

AIMB-330(CN19)/ AIMB-340(CN19)/ AIMB-640(CN18)
The number of GPIO pins : 4 Inputs, 4 outputs

Pin Signal | Pin Signal

Pin-1 | INO Pin-2 | +5V

Pin-3 | IN1 Pin-4 | OUTO (Max 1A)
Pin-5 | IN2 Pin-6 | GND

Pin-7 | IN3 Pin-8 | OUT1 (Max 1A)
Pin-9 | GND Pin-10 | +12V

Pin-11 | Key Pin-12 | Key

Pin-13 | POUT3 | Pin-14 | GND

Pin-15 | OUT2 | Pin-16 | +12V

*. It should add the pull-up resistors to OUTO, OUT1 on AIMB-330, AIMB-340 and
AIMB-640.

*PCM-3350(CN36,CN37)/PCM-3353(CN36,CN37)/PCM-3

372(CN2,CN23)/PCM-4153(CN36,CN37)
*PCM-XXXX(IN,OUT)

The number of GPIO pins : 4 Inputs, 4 outputs

IN ouT
Pin Signal | Pin Signal
Pin-1 | VCC Pin-1 ouTO0
Pin-2 | INO Pin-2 OuUT1
Pin-3 | IN1 Pin-3 ouT2
Pin-4 | IN2 Pin-4 OuT3

........

ADVANTECH

Susi Library Reference

|[Pin5 [IN3 [Pin-5 |GND |

PCM-4372(CN2)/PCM-4386(CN7)/PCM-4380(CN7)/
PCM-4390(CN6)/PCM-9374(CN4)/PCM-9375(CN9)/
PCM-9377(27)/PCM-9380(CN7)/PCM-9386(CN7)/
PCM-9577(CN25)/PCM-9584(CN16)/PCM-9586(CN9)/

PCM-9679(CN7)
The number of GPIO pins : 4 Inputs, 4 outputs

Pin | Signal | Pin Signal
Pin-1 | VCC | Pin-2 | OUTO
Pin-3 | INO Pin-4 | OUT1
Pin-5 | IN1 Pin-6 | OUT2
Pin-7 | IN2 Pin-8 | OUT3
Pin-9 | IN3 Pin-10 | GND

*, It should add the pull-up resistors to the input pins on PCM-9577 for logic level.

PCM-9381(CN7)/ PCM-9387(CN7)
The number of GPIO pins : 4 Inputs

Pin | Signal
Pin-1 | VCC
Pin-2 | INO
Pin-3 | IN1
Pin-4 | IN2
Pin-5 | IN3

PCM-9578(CN5)
The number of GPIO pins : 4 Inputs, 4 outputs

Pin | Signal | Pin Signal
Pin-1 | OUTO | Pin-2 | OUT1
Pin-3 | OUT2 | Pin-4 | OUT3
Pin-5 | OUT4 | Pin-6 | OUT5
Pin-7 | OUT6 | Pin-8 | OUT7

91 of 105

Trusted cPlatfurm Services

ADVANTECH

Susi Library Reference

| Pin-9 | GND [Pin-10 | GND |

PCM-9580(CN16)
The number of GPIO pins : 4 Inputs, 4 outputs

Pin | Signal | Pin Signal
Pin-1 | INO Pin-2 | OUTO
Pin-3 | IN1 Pin-4 | OUT1
Pin-5 | IN2 Pin-6 | OUT2
Pin-7 | IN3 Pin-8 | OUT3
Pin-9 | GND | Pin-10 | GND

PCM-9581(CN9)/ PCM-9582(CN19)/ PCM-9586(CN9)/

PCM-9587(CN19)/PCI-6681(CN16)
The number of GPIO pins : 4 Inputs, 4 outputs

Pin Signal | Pin Signal
Pin-1 | INO Pin-2 | OUTO
Pin-3 | GND |Pin-4 | GND
Pin-5 | IN1 Pin-6 | OUT1
Pin-7 | VCC |Pin-8 | NC
Pin-9 | IN2 Pin-10 | OUT2
Pin-11 | GND | Pin-12 | GND
Pin-13 | IN3 Pin-14 | OUT3

*. It should add the pull-up resistors to In2, In3, OUTO, OUT1 on PCM-9581 and
PCM-9586.

PCI-6880 (CN2)
The number of GPIO pins : 4 Inputs, 4 outputs

Pin | Signal | Pin Signal
Pin-1 | INO Pin-2 | OUTO
Pin-3 | IN1 Pin-4 | OUT1
Pin-5 | IN2 Pin-6 | OUT2
Pin-7 | IN3 Pin-8 | OUT3
Pin-9 | VCC | Pin-10 | GND

92 of 105

Trasted ePlatfurm Services

ADVANTECH

Susi Library Reference

93 of 105

Trusted cPlatfurm Services

ADVANTECH

Susi Library Reference

SOM-5780(U17)/SOM-5782(U14)

The number of GPIO pins : 4 Inputs, 4 outputs

Pin Signal Pin Signal
Pin-1 | VCC 3.3V | Pin-16 | GND

Pin-4 | IN2 Pin-20 | OUT3
Pin-5 | IN3 Pin-21 | OUT2
Pin-11 | INO Pin-22 | OUT1
Pin-12 | IN1 Pin-23 | OUTO

*. SOM-5780, SOM-5782 must combine with SOM-DB5700(carrier board).

SOM-DB5700(CN27)

Pin-1 | INO Pin-2 | VCC
Pin-3 | IN1 Pin-4 | OUTO
Pin-5 | IN2 Pin-6 | OUTL
Pin-7 | IN3 Pin-8 | OUT2
Pin-9 |GND |Pin-10 | +12V
Pin-11 | NC Pin-12 | NC
Pin-13 | OUT3 |Pin-14 | NC
Pin-15 |GND | Pin-16 | +12V

PCM-3375(CN16)

94 of 105

The number of GPIO pins : 4 Inputs, 4 outputs

Pin

Signal

Pin-1

-5V

Pin-2

GND

Pin-3

-12V

Pin-19

INO

Pin-20

IN1

Pin-21

IN2

Pin-22

IN3

Pin-23

OuTO

Pin-24

OuT1

Pin-25

ouT2

Pin-26

OuT3

Trusted cPlatfurm Services

ADVANTECH

Susi Library Reference
*. There are two high drive digital outputs, OUTO, OUT1 (24 VDC, 1 A max), two

TTL level digital outputs, OUT2, OUT3 and four digital inputs (TTL level). You can
configure the digital 1/O to control the opening of the cash drawer and to sense the
closing of the cash drawer. The above table explains how the digital 1/0 is
controlled via software programming and how a 12 V solenoid or relay can be
triggered. For completeness, please refer to the user manual of
POS-563/POS-564/POS-761.

95 of 105

Trusted ePletfurm Services

ADVANTECH

Susi Library Reference

Appendix B — Programming Flags Overview

Hardware Monitor Flags

= Fan
Flag Value Description
FCPU 1u CPU FAN
FSYS 2U System FAN
F2ND 4u 3rd FAN
= [em perature
Flag Value Description
TCPU 1lu CPU Temperature
TSYS 2U System Temperature
= \oltage
Flag Value Description
VCORE 1lu Vcore
V25 2u 2.5V
V33 4u 3.3V
V50 8u 5V
V120 16u 12v
VSB 32u Voltage of standby
VBAT 64u VBAT
VN50 128u -5V
VN120 256u -12v
VTT 512u VTT
Boot Logger Flags
= Bootcounter
Mode Flag Value Description
ESCORE_BOOTCOUNTER_MODE_GET 1u Read Operation
ESCORE_BOOTCOUNTER_MODE_SET 2u Write Operation

96 of 105

Trused eMaiform Services
ADVANTECH

Susi Library Reference
Element Flag Value Description
Current Status
(Is Enabled or Disabled?)
ESCORE_BOOTCOUNTER_VALUE 2u Number of Reboot Times

ESCORE_BOOTCOUNTER_STATUS 1u

= Runtimer

Mode Flag Value Description
ESCORE_RUNT IMER_MODE_GET 1u Read Operation
ESCORE_RUNTIMER_MODE_SET 2u Write Operation

Element Flag Val. Description

Current Status
(Is Enabled or Disabled?)
ESCORE_RUNTIMER_STATUS_AUTORUN 2Uu Is AutoRun upon Startup?
ESCORE_RUNT IMER_VALUE_CONT INUALON 4u OS continual run time (reset
to 0 after a reboot)
ESCORE_RUNTIMER_VALUE_TOTALON 8u Sum of OS total run time

ESCORE_RUNTIMER_STATUS_RUNNING 1u

97 of 105

Trusted ePletfurm Services

ADVANTECH

Susi Library Reference

GPIO Mask Flags

Flag Value Description
ES10_SMASK_PIN_FULL 0x01 Series of. binary 1s for the number
of total pins
ES10_SMASK_CONFIGURABLE | 0x02 Direction Changeable Pins
ES10_DMASK_DIRECTION 0x20 Current Direction of Pins

98 of 105

Trusted ePletfurm Services

ADVANTECH

Susi Library Reference

Appendix C - API Error Codes

An error value will be either
Function Index Code + Library Error Code, or
Function Index Code + Driver Error Code.
If you call an API and returns with fail. The Function Index Code in its error

code combination does not necessarily equal to the index code of the API. This is
because the APl may make a call to another API.

Function Index Code

Index Code | Function Index
DLL
00100000 ESusilnit
00200000 ESusiUninit
00300000 ESusiGetVersion
00400000 ESusiDIlInit
00500000 ESusiDIIUnInit
00600000 ESusiDIl1GetVersion
00700000 ESusiDIl1GetLastError
Core
10100000 ESusiCorelnit
10200000 ESusiCoreAvailable
10300000 ESusiCoreGetBIOSVersion
10400000 ESusiCoreGetPlatformName
10500000 ESusiCoreAccessBootCounter
10600000 ESusiCoreAccessRunTimer
10700000 ESusiCoreRebootSystem
10800000 ESusiReserved8000000
Watchdog
20100000 ESusiWDInit
20200000 ESusiWDAvai lable
20300000 ESusiWDDisable
20400000 ESusiWDGetRange
20500000 ESusiWDSetConfig
20600000 ESusiWDTrigger
GPIO
30100000 ESusilOlnit
30200000 ESusilOAvailable
30300000 ESusi 10Count
30400000 ESusilOlnitial

99 of 105

Trusted ePletfurm Services

ADVANTECH

Susi Library Reference

30500000 ESusi I0ORead
30600000 ESusi IOReadMul ti
30700000 ESusilOWrite
30800000 ESusilOWriteMulti
30900000 ESusi 10CountEx
31000000 ESusi 10QueryMask
31100000 ESusilOSetDirection
31200000 ESusilOSetDirectionMulti
31300000 ESusi IOReadEXx
31400000 ESusi IOReadMultiEx
31500000 ESusi lOWriteEx
31600000 ESusilOWriteMultiEx
SMBus
40100000 ESusiSMBuslInit
40200000 ESusiSMBusAvai lable
40300000 ESusiSMBusReadByte
40400000 ESusiSMBusReadByteMulti
40500000 ESusiSMBusReadWord
40600000 ESusiSMBusWriteByte
40700000 ESusiSMBusWriteByteMulti
40800000 ESusiSMBusWriteWord
40900000 ESusiSMBusReceiveByte
41000000 ESusiSMBusSendByte
41100000 ESusiSMBusWriteQuick
41200000 ESusiSMBusReadQuick
41300000 ESusiSMBusScanDevice
41400000 ESusiSMBusWriteBlock
41500000 ESusiSMBusReadBlock
IIC
50100000 ESusillICInit
50200000 ESusilICAvailable
50300000 ESusi l ICReadByte
50400000 ESusilICWriteByte
50500000 ESusilICWriteReadCombine
50600000 ESusilICRead
50700000 ESusillCWrite
50800000 ESusilICScanDevice
50900000 ESusilICWriteRegister
51000000 ESusilICReadRegister
VGA Control
60100000 ESusiVCInit
60200000 ESusiVCAvailable
60300000 ESusiVCGetBright
60400000 ESusiVCGetBrightRange
60500000 ESusiVCScreenOff
60600000 ESusiVCScreenOn

100 of 105

Trusted ePletfurm Services

ADVANTECH

Susi Library Reference

60700000 | ESusiVCSetBright
Hardware Monitor
70100000 ESusiHWMInit
70200000 ESusiHWMAvailable
70300000 ESusiHWMGetFanSpeed
70400000 ESusiHWMGetTemperature
70500000 ESusiHWMGetVoltage
70600000 ESusiHWMSetFanSpeed

101 of 105

Trusted ePletfurm Services

ADVANTECH

Susi Library Reference

Library Error Code

Error Code | Error Type
Driver Open Errors
00000001 ERRLIB_CORE_OPEN_FAIL
00000002 ERRLIB_WDT_OPEN_FAIL
00000004 ERRLIB_GPI0O_OPEN_FAIL
00000008 ERRLIB _SMB OPEN_FAIL
00000016 ERRLIB_VC OPEN_FAIL
00000032 ERRLIB_HWM_OPEN_FAIL
DLL Functions
00000000 ERRLIB_SUCCESS
00000001 ERRLIB_RESERVED1
00000002 ERRLI1B_RESERVED2
00000003 ERRLIB_LOGIC
00000004 ERRLIB_RESERVED4
00000005 ERRLIB_SUSIDLL_NOT_INIT
00000006 ERRLIB_PLATFORM_UNSUPPORT
00000007 ERRLIB_API_UNSUPPORT
00000008 ERRLIB_RESERVED8
00000009 ERRLIB_API_CURRENT_UNSUPPORT
00000010 ERRLIB LIB INIT_FAIL
00000011 ERRLIB_DRIVER_CONTROL_FAIL
00000012 ERRLIB_INVALID PARAMETER
00000013 ERRLIB_INVALID 1D
00000014 ERRLIB_CREATEMUTEX FAIL
00000015 ERRLIB_OUTBUF_RETURN_SIZE INCORRECT
00000016 ERRLIB_RESERVED16
00000017 ERRLIB_ARRAY_ LENGTH_INSUFFICIENT
00000032 ERRLIB_RESERVED32
00000050 ERRLIB_BRIGHT _CONTROL_FAIL
00000051 ERRLIB_BRIGHT_OUT_OF RANGE
00000064 ERRLI1B_RESERVED64
00000128 ERRLIB RESERVED128
00000256 ERRLIB_RESERVED256
Core Functions
00000500 ERRLIB_CORE_BIOS_STRING_NOT_FOUND
00000512 ERRLIB_RESERVED512
Watchdog Functions
00001024 | ERRLIB_RESERVED1024
GPIO Functions (N/A)
SMBus Functions
00001400 | ERRLIB_SMB_MAX_BLOCK_SIZE_MUST_WITHIN_32
IIC Functions
00001600 | ERRLIB_11C_GETCPUFREQ_FAIL

102 of 105

Trusted ePletfurm Services

ADVANTECH

Susi Library Reference

VGA Control Functions (N/A)

Hardware Monitor Functions
00002000 ERRLIB_HWM CHECKCPUTYPE_FAIL
00002001 ERRLIB_HWM_ FUNCTION_UNSUPPORT
00002002 ERRLIB_HWM_ FUNCTION_CURRENT_UNSUPPORT
00002003 ERRLIB_HWM_FANDIVISOR_INVALID
00002048 ERRLIB RESERVED2048

Reserved Functions

00004096 ERRLI1B_RESERVED4096
00008192 ERRLIB_RESERVED8192

103 of 105

Trusted ePletfurm Services

ADVANTECH

Susi Library Reference

Driver Error Code

Error Code Error Type

00000000 ERRDRV_SUCCESS

Common to all Drivers
00010000 ERRDRV_CTRLCODE
00010001 ERRDRV_LOGIC
00010002 ERRDRV_INBUF_INSUFFICIENT
00010003 ERRDRV_OUTBUF_INSUFFICIENT
00010004 ERRDRV_STOPTIMER_FAILED
00010005 ERRDRV_STARTTIMER_FAILED
00010006 ERRDRV_CREATEREG_FAILED
00010007 ERRDRV_OPENREG_FAILED
00010008 ERRDRV_SETREGVALUE_FAILED
00010009 ERRDRV_GETREGVALUE_FAILED
00010010 ERRDRV_FLUSHREG_FAILED
00010011 ERRDRV_MEMMAP_FAILED

Core Driver (N/A)
Watchdog Driver (N/A)
GPIO Driver
00011200 ERRDRV_GPIO_PIN_DIR_CHANGED
00011201 ERRDRV_GP10_PIN_INCONFIGURABLE
00011202 ERRDRV_GPI10_PIN_OUTPUT_UNREADABLE
00011203 ERRDRV_GPIO_PIN_INPUT_UNWRITTABLE
00011204 ERRDRV_GPI10O_INITIAL_FAILED
00011205 ERRDRV_GPI0O_GETINPUT_FAILED
00011206 ERRDRV_GPI10_SETOUTPUT _FAILED
00011207 ERRDRV_GPI0_GETSTATUS 10_FAILED
00011208 ERRDRV_GPI0_SETSTATUS OUT_FAILED
00011209 ERRDRV_GPI10_SETDIR_FAILED
SMBus Driver
00011400 ERRDRV_SMB_RESETDEV_FAILED
00011401 ERRDRV_SMB_TIMEOUT
00011402 ERRDRV_SMB BUSTRANSACTION_FAILED
00011403 ERRDRV_SMB_BUSCOLLISION
00011404 ERRDRV_SMB CLIENTDEV_NORESPONSE
00011405 ERRDRV_SMB_REQUESTMASTERMODE_FAILED
00011406 ERRDRV_SMB NOT_MASTERMODE
00011407 ERRDRV_SMB BUS_ ERROR
00011408 ERRDRV_SMB_BUS STALLED
00011409 ERRDRV_SMB NEGACK_DETECTED
00011410 ERRDRV_SMB_TRANSMITMODE_ACTIVE
00011411 ERRDRV_SMB_ TRANSMITMODE_INACTIVE
00011412 ERRDRV_SMB_STATE_UNKNOWN
IIC Driver

104 of 105

Trusted ePletfurm Services

ADVANTECH

Susi Library Reference

00011600 ERRDRV_I11C_RESETDEV_FAILED
00011601 ERRDRV_I11C_TIMEOUT
00011602 ERRDRV_11C_BUSTRANSACTION_FAILED
00011603 ERRDRV_11C_BUSCOLLISION
00011604 ERRDRV_I11C_CLIENTDEV_NORESPONSE
00011605 ERRDRV_11C_REQUESTMASTERMODE_FAILED
00011606 ERRDRV_11C_NOT_MASTERMODE
00011607 ERRDRV_I11C_BUS ERROR
00011608 ERRDRV_I11C_BUS_STALLED
00011609 ERRDRV_11C_NEGACK_DETECTED
00011610 ERRDRV_I11C_TRANSMITMODE_ACTIVE
00011611 ERRDRV_11C_TRANSMITMODE_INACTIVE
00011612 ERRDRV_I11C_STATE_UNKNOWN

VGA Control Driver
00011800 ERRDRV_VC_FINDVGA_FAILED
00011801 ERRDRV_VC_ FINDBRIGHTDEV_FAILED
00011802 ERRDRV_VC VGA UNSUPPORTED
00011803 ERRDRV_VC_BRIGHTDEV_UNSUPPORTED

Hardware Monitor Driver (N/A)

105 of 105

	Introduction
	SUSI Functions
	Benefits

	Environments
	Package Contents
	Core functions
	Watchdog (WD) functions
	GPIO (IO) functions
	SMBus functions
	IIC functions
	VGA Control (VC) functions
	Hardware Monitoring (HWM) functions
	FPGA SRAM functions
	FPGA 72 Bit GPIO functions
	FPGA AES functions
	FPGA RNG functions

	 SUSI API Programmer’s Documentation
	SusiDllInit
	SusiDllUnInit
	SusiDllGetVersion
	SusiDllGetLastError
	SusiCoreAvailable
	SusiCoreGetBIOSVersion
	SusiCoreGetPlatformName
	SusiCoreAccessBootCounter
	SusiCoreAccessRunTimer
	SSCORE_RUNTIMER
	SusiWDAvailable
	SusiWDGetRange
	SusiWDSetConfig
	SusiWDTrigger
	SusiWDDisable
	 SusiIOAvailable
	SusiIOCountEx
	SusiIOQueryMask
	SusiIOSetDirection
	SusiIOSetDirectionMulti
	SusiIOReadEx
	SusiIOReadMultiEx
	SusiIOWriteEx
	SusiIOWriteMultiEx
	Susi64BitsIOQueryMask
	Susi64BitsIOSetDirection
	Susi64BitsIOSetDirectionMulti
	Susi64BitsIOReadMultiEx
	Susi64BitsIOWriteMultiEx
	SusiSMBusAvailable
	SusiSMBusScanDevice
	SusiSMBusReadQuick
	SusiSMBusWriteQuick
	SusiSMBusReceiveByte
	SusiSMBusSendByte
	SusiSMBusReadByte
	SusiSMBusWriteByte
	SusiSMBusReadWord
	SusiSMBusWriteWord
	SusiIICAvailable
	SusiIICRead
	SusiIICWrite
	SusiIICWriteReadCombine
	SusiVCAvailable
	SusiVCGetBrightRange
	SusiVCGetBright
	SusiVCSetBright
	SusiVCScreenOn
	SusiVCScreenOff
	SusiHWMAvailable
	SusiHWMGetFanSpeed
	SusiHWMGetTemperature
	SusiHWMGetVoltage
	SusiHWMSetFanSpeed

	SUSIFPGA API Programmer’s Documentation
	SUSIFPGADllInit
	SUSIFPGADllUnInit
	SUSIFPGAStorageAreaGetType
	SUSIFPGAStorageAreaGetSize
	SUSIFPGAStorageAreaRead
	SUSIFPGAStorageAreaWrite
	SUSIFPGAStorageAreaErase
	SUSIFPGAStorageAreaFPGAConfig
	SRAM
	SUSIFPGAIOFPGACountEx
	SUSIFPGAIOFPGAReadEx
	SUSIFPGAIOFPGAReadMultiEx
	SUSIFPGAIOFPGAWriteEx
	SUSIFPGAIOFPGAWriteMultiEx
	SUSIFPGASecurityFPGASetAESKey
	SUSIFPGASecurityFPGAGetAESKey
	SUSIFPGASecurityFPGAGenerateAESData
	SUSIFPGASecurityFPGAGenerateRandomNum

	Appendix A - GPIO Information
	Appendix B – Programming Flags Overview
	Appendix C - API Error Codes
	Function Index Code
	Library Error Code
	Driver Error Code

