MRM VCIL User Manual

5/4/2017
SSID.SRP

Copyright (c) 2014 by Advantech. All Rights Reserved.

Table of contents

O g0 [T o 9
L VO I < T 9
1.2 System ReqUIrEMENTSccuuiiiiiiii i r s e er e ean s 11

72 T LY 0 PP 12
2.1 VCIL CONVENEIONS ...ivviiiieiiiressissss s ssa s ras s s s saa s s s s raa s raa s s senn s nenns 12

20 R 1L T o T2y A T 12
2 07 Y o [[T 13
2.2 C++ with Visual StUIOccuvuiiiiiiiiri 15
2.3 JAVA with Android StUIO......cuuuiiiiiiicieie e e e eaa 16

3 Application Programming Interface......ccccoviiiiiiiiiiiiiiirie e e 19

3.1 VCIL Management FUNCHIONSc.oiiiiiiiiiiirisi s sss s s s eeas 19

G 20 1 T 1N 19
G 20 I = (ol U £ T PN 19
WINAOWS/LINUX 1 tttieriieiieniiessssssnsesssnsssssenssnsesssenssssennsensesnrennssnsensrennsnnses 19

Y e [0T 19
3.1.1.2 Protocol Mode Setting........cviveeeiiiieriiiirrin e ers e e ren s e e 20
Windows/ LiNUX/ ANArOidcvuieiieiriiiisieeeeies e esssessensesnsennssnsesnsensennnes 20
280 7 10 4= = | o o N 21
3.1.2.1 WiINAOWS/LINUX..euuiiuiieienrirenresreeeesessensesnsesnsensssnsesnsensssnsennsenneenes 21
Aol | 370 o LT = 11 o ¢ R 21

G 700 0707 Yo o [oo [P PPT 22
1Y 11 22

G 280 G 2 o 311 =] o | PN 23
G 780 0 701 Y2 o [oo 1 PP 23
3.1 AP e rn e 24
G 0 o | 1 PP 24
I O 0 A o | o (=1 T 25
3.1.4.3 VCIl_get_VErSION ..cuuiiiiiiieiiie et 26
3.1.4.4 VCIl_Set_MOAEcoveiiieiee e 27
3.1.4.5 VGl _get_mOde....ccuiiiiii i 28

3.2 Firmware Management FUNCLIONSccuoiiiiiieiiii e e s 29

3.2.1.1 BaSIC USAQE . cvuiiiiiiiiiiii ettt re s s re s e s e r s n e e e nan 29
WINAOWS/LINUX 11 tvtietiiiiieereasesssnsensenrssnseassenseanseassssennsensesnsennssnsennsennsnnses 29

Y e [0T 29
3.2.2 CONSEANT cevvuiiiiiiiii e 30
3.2.2.1 ANArOid...cccvuuiiiiiiir i 30

G 702G B PP 31
3.2.3.1 vail_firmware_get_Version......ccccoicuiiiiiiiniiiiin e 31
3.2.3.2 VCIl_fiIrmMWare_rESELuviviiiieiieeireieri e srea s ra e s eanrranennses 32
3.3 CAN FUNCHIONS...ccvuiiiiiiiiii e s s e eaas 33
280G 0 U 57 T 1P 33
G J0C TR N == 1] (ol U L7 T 1< 33
WiINAOWS/LINUX 1. tvuiiriiiiee i se e s sa s s s e s sa s e sea s ea s eassan s ennsensennsennsenses 33

Y e [0T P 33
3.3.1.2 CAN Bus Speed Settingcoeeuruiiiiiiiiiiniierii e e 34
Windows/ LinUX/ ANArOidccuveevieiriiieeriererrs s eerensensesnsennsensennsennsennes 34
3.3.1.3 CAN Message Readinguovvireeruiiiiiiiiisiierrsne e rrrns e rran e erean s 35
WiINAOWS/LINUX 1. ttuieriiiieiiese s ss s e s s sa s e sen s eansennsensennsenssansennssnsennsennsenses 35

Y e [0T 37
3.3.1.4 CAN MesSage WrtiNg......ceuuirieuniiieiiiiinness s e s s s ren s ana e 40
Windows/ LinUX/ ANArOidcuveeuvieiriieerirreree s eesensensssnsensrnsennsenneennes 40
3.3.1.5 CAN Acceptance filter SEttingscovvvriiiimriniiiiieer e 41
Windows/ LiNUX/ ANArOidcvuiieniiriiiiiisiiiesiessenresssesssnsesnsesssnsesnsennssnss 44

G JRC TR = 010 4T = | o o PN 46
3.3.2.1 WiINAOWS/LINUX. . euuiiuienieniruiesssessessesssessessesssesssrssssssesssessesssesnsennennes 46
VCil_can_speed ENUM........oiiiiiii i e e 46
VCIl_can_bus_moOde ENUMciiuiiiiiieiiii i ssrea s s es s sa s s san s rasnnnes 47

G T8 0700 2 1Y o [oo P 48
VCIL_CAN_SPEED.........ccttttturiiieie e eeeerrrssns e s e e s e e ransnn e s s s e e e e e nrnn s 48
VCIL_CAN_BUS_MODE.......cuuuuiiiiiiieeeereernnsnnsessssssseessssssnssesssssssssssnssnnnns 49
3.3.3 CONSEANT ... iiei i 50
G 70 70 20 1 o [o o U 50

3.3.4 SErUCEUIE/CIASSES ..vuivnirniririiiiriiriisirsssissssssssssssssssssssssssnssnssnssnssnssnssnss 51

3.3.4.1 WiNAOWS/LINUX..euuieuiieuienriurrsrensensesnrensessesnseansrasssnseasrnsesnsennsennenne 51

vCil_can_message_t StrUCLUIEcoiveeuiiiiii e e 51
VCil_can_mask_t SEtruCtUrE.......civii s 52
vCil_can_error_status StrUCLUIecovevuiiiiiiiiiiiin i 53

G J9C 1 00 AV g T | o] T [P 55
VCIL_CAN_MESSAGEceuiiiiiieieiniieese s s s s er s s s s s e s s raan s enn e s ennns 55
VCIL_CAN_MASK ..cttuiiiiiirinseseersssssssrssn s s s sessss s s s ssasssssssensasssssrssssssssnnnnns 56
VCIL_CAN_ERROR _STATUS ..ceeiiiiiieer e eesn s rr s srn s s rns e enn s nn s eenas 58
3.3, APIS e 60
20 18 T8 A 1 = 1 == L [60
3.3.5.2 vail_can_read_MUlti.......cooivieiiiiiiiiii e 61
0 20 T0C AR 1 = 1./ L (=R 62
3.3.5.4 vCil_can_set_sSpeed.......c..cciiiiiiiiiiii s 63
3.3.5.5 vcil_can_set_speed_listen_modecceviiviiiiiiiiiinii e 64
3.3.5.6 vCil_can_get_sSpeedccciiiiiii i 65
3.3.5.7 vcil_can_get_bus_error_statusccccceeriniiiiiiiiiin i, 66
3.3.5.8 VCil_Can_SEt_MaSK.....cieuiiuiieiiiniiiiieei e e ea e s ea e e rn s ea e nnes 67
3.3.5.9 vail_can_get_maskcccceeuiiiiiiiiiii e 68
3.3.5.10 vcil_can_remove_MasKcieiiuiiriiiiieiiniisinisies s ss s sasansanns 69
3.3.5.11 vCil_can_reSet._ MasK......ccivieiiieiiiiiieiiei e e ra e e 70
3.3.5.12 vail_can_Set_@vent ... e 71
3.3.5.13 vcil_can_set_event_handlerccociiiiiiiiiii 72
3.3.5.14 vcil_can_unset_event_handler.......ccoceiviiiiiiiiiinie e 73
3.3.5.15 VCil_Can_Wait_&VENT......coviiii i e 74
3.4 J1939 FUNCHIONS ..euvieeiieeiieeeeeiree s ee s e e e s s s e e e s ra s s e s e nan s en s e rnnsrnnnsennsenan 75
G F N U7 T 75
G J O N == 1] (ol U L7 T 1< T 75
WINAOWS/LINUX 1. tttiiriiiiiesiiessssessessssssssssassssennseaesssennsensesnsennssnsennsennsnnses 75

Y T | o] o PP 75
3.4.1.2 11939 Message ReadiNgcccevuiiirriirrriiierrnserssa s ssssssesanssenn s snnnnaees 76
3.4.1.3 J1939 Message WIItiNGceuvvveeuirieniirinniernreren s ssnsssesn s ssns s sennsaees 76
3.4.1.4 11939 Acceptance filter Settingsovivvriiiiirinieieiir e 76

G 2 0 o 1] =] o | PN 77
G 7 070 Yo o [oo [PP 77

3.4.3 SErUCEUIE/CIASSES . evuivuiieniiriiireerirreresrraresnrensearesn e rrarean e srnreanrennennes 78

3.4.3.1 WiINAOWS/LINUX..euuteuieuienriuresrenseuresnresnsesresnsesnsrssssnseasrnsesnsennsenssnne 78

VCil_j1939_message_t StruCtUreccuuiiiiiiiiiiiirie e e 78
VCIl_j1939_config_t StrUCTUreivviie e e 79

G 1 NG 1072 1Y g T | o T [P 80
VCIL_J1939 MESSAGE......ciiiitiiiieiiieere e s s s s e s e r s s e e raa e ern s eenas 80
VCIL_J1939 CONFIG ...cccvuiiirniiernsseennnssssnsssssasssessssssnsssrsnsssrsnssssnnsssnnns 81
30414 APIS oot 83
3.4.4.1 VCIl_j1939_read......cciiiuiiiiiiiiiie e 83
3.4.4.2 vcil_j1939_read_mMUlti.......c.coeuuiiiniiiii e 84
3.4.4.3 VCIl_J1939_WHItE ceerrei i 85
3.4.4.4 vCil_j1939_add_maskKccueiiriiiriiiiiiieiie e 86
3.4.4.5 vcil_j1939_get_mask_NUMDbEr.........cceiiiiiiiiiiiie e 87
3.4.4.6 vcil_j1939_get_all_maskccuceiiiiiiiiiiii e 88
3.4.4.7 vCil_j1939_remove_MaskKccccicuiriiuiiirniiniieinsein s 89
3.4.4.8 vcil_j1939_remove_all_masK........cceeiiiiriiiiiiinieireesers e 90
3.4.4.9 vCil_j1939_5et_CONfig ..cevvruiiiiiiiriiiiiiiiii e 91
3.4.4.10 vCil_j1939_get_CONfiguviereuiiiirniiieriinieren s res e e e e s rene e 92
3.4.4.11 vCil_j1939_Set_eVventccuoiiiiiiiiiiii e 93
3.4.4.12 vcil_j1939_set_event_handlercccoviviiiiiiiiiiiiiie e 94
3.4.4.13 vcil_j1939_unset_event_handler.............cooveiiiiiiiiiiiii i, 95
3.4.4.14 vCil_j1939_wait_eVvent.....ccciciiiiiiiiiii e 96
3.5 OBD2 FUNCHIONS ..uuiitiiiiiiiiii i ceee s s s s ra s e s s s a e s s s s nn s ea s e r s e nanernnsenan 97
20 T U 57 T 1P 97
G 2 T I I =] (ol U L= T PP 97
WiINAOWS/LINUX 1. evuveeieiieereesereesensseuseanseasesseanseasansennsensennsennsrnsennsennsnnes 97

Y T | o] o PP 97
3.5.1.2 OBD2 Message ReadiNgcceuvuiiiiriiiiiiieiiiinneseeenn e rrens e eenn s 98
3.5.1.3 OBD2 Message WItING ...cceuiveeuiiienrirenniersnssrensssensssssnssssnssssennsaees 98
3.5.1.4 OBD2 Acceptance filter Settingsccuvveviiiiiiiiiiiiiiiii e 98
2T (0] 11 = o | 100
3.5.2.1 ANArOid. ... icee i 100
3.5.3 SErUCEUIE/CIASSES ..uuivniriritiiriiriiriirirrirsissirassssssrasssarsnsansanssnssnssnsansens 101
3.5.3.1 WiINAOWS/LINUX..euueeuiiureuieanrenneeusesrenrssnsesrrnresnsensrnsssnsennseresnrennennes 101

vCil_obd2_message_t StruCtureooovvee i 101

3.5.3.2 ANArOid....oiiiiiiiiiiiiiii e 102

VCIL_OBD2_MESSAGEcceuuuiieiiiieeeieerensnnne s s sesereresnssns s s s s s seesnnnnsnnnnns 102
3504 APIS .o e e e e e 103
3.5.4.1 vcil_obd2_read........cccoviiiiiiiiiiiiiii 103
3.5.4.2 vcil_obd2_read mMuUlti.....ccciieiiiiiiiiiiiiiii s s s 104
3.5.4.3 VCIl_ODAZ2 _WIIEE cuiviiii i s s s s s e s s e s s e s ransnns 105
3.5.4.4 vcil_obd2_add_maskcccrimmmiiiiiin 106
3.5.4.5 vcil_obd2_get_mask_NUMDErc.cuoiiiiiiiiiiiiiii e 107
3.5.4.6 vcil_obd2_get_all_mask.........ccccvriiiiiiiiiiiiiiii 108
3.5.4.7 vCil_obd2_remove_MasK......ccoeeiiieiiiiiiiiieiiiiiesi e es e enn e 109
3.5.4.8 vcil_obd2_remove_all_mask.......ceoiiiiiiiieiiiiiien e 110
3.5.4.9 vcil_obd2_set_event..........ccccimiiiiiii 111
3.5.4.10 vcil_obd2_set_event_handlercooiiiiiiiiiiii i 112
3.5.4.11 vcil_obd2_unset_event_handler............ccccvmmmiiiiinniiiniiini, 113
3.5.4.12 vCil_obd2_wWait_@VENLceuiiiiiiiiii i 114
3.6 J1708 FUNCLIONS ...uviiieiiiiiii s e e e 115
2 U L7 T 1< 115
3.6.1.1 BaSIiC USAQEiiierniiiiiiiiii it e s s e 115
WINAOWS/LINUX 11 tvtiieiiitesiessssesnsesssnsesnsenssnsennsennsenseanseanssnsennsensesnrennsenns 115

Y o [0T PP 115
3.6.1.2 J1708 Message ReadiNg......ccuvvruvierrnniereniniernsssrensssenssersnnsssnnnsssnnnnss 116
3.6.1.3 J1708 Message WItiNgcc.viveruririinniiriinirins s ren e e s eenas 116
3.6.1.4 J1708 Acceptance filter SEttingsccvvuiiiiiiiiiiiiiiii e, 116
3.6.2 CONSEANT...iieuiiiiei e e 117
3.6.2.1 ANArOid. .. coiiiiieieieeiriee e e 117
3.6.3 SErUCEUIE/CIASSES ...vuivuieniieeiiieerenrrrrs s e e s ea s senrean s e s e ean s e eenrennrenns 118
3.6.3.1 WiINAOWS/LINUX..euuieuiiureuienrenneeusearenresnrenrenresnsenssrnsesnrennsensesnrennennses 118
VCil_j1708_message_t StruCtureocviiii i 118

G TS J0C 2002 1Y o [o o 119
VCIL_J1708_MESSAGE......cctuuiiiiiiiiieeeerirrsse e s e e r s 119
3.6.4 APIS .. 120
3.6.4.1 VCIl_J1708_read......ccccevuiiiiiiiiiiiiii et 120

3.6.4.2 vcil_j1708_read_multi.........ccceevmmiiniiiiiiicirnii 121

3.6.4.3 VCIl_J1708_WHLE ..evvvrriiiiiiiiiiiriiiii e 122

3.6.4.4 vCil_j1708_add_maskKccceiiuiiiiuiiiiiiiiiiieiin e 123
3.6.4.5 vcil_j1708_get_mask_NUMDErcccviiriiiiiiiie e 124
3.6.4.6 vCil_j1708_get_all_maskccceeeuiiiriiiiiiiiiinrc e 125
3.6.4.7 VCil_j1708_remove_MasKcccieuueiiriiiniieiinieiiesnseses e sesnsesaesennseens 126
3.6.4.8 vcil_j1708_remove_all_maskK........c.cooviiriiiiiiiiiin e 127
3.6.4.9 VCil_j1708_Set_eVventccoiiiuiiiiiiiiiie i 128
3.6.4.10 vcil_j1708_set_event_handlerccceiiiiiiiiiiiiiiiiin e 129
3.6.4.11 vcil_j1708_unset_event_handler........c..ccoeririiiiiiiiiiiin e, 130
3.6.4.12 vCil_j1708_wait_event.......ccccoiiiiiiiiiii e 131
T N oY 72 U T TP 132
20 U L7 T 1< 132
G TR N = = 1] (ol U L7 T [132
WiINAOWS/LINUX .. tvuiieiiiiiieiresisss e ss s enn s s saa s ea s e san s rn s e s ean s rasensennsenns 132

A T | o o PSPPSRI 132
3.7.1.2 J1587 Message ReadiNg........ccuuuuiiiiriinniniiiriinin e e e 133
3.7.1.3 J1587 Message WIItiNgcc.uviveruiiiinnniiiinirins s rsn s s s senas 133
3.7.1.4 J1587 Acceptance filter Settingsccuvviiiiiiiiiiiiiicii e, 133
TR 7 o] 11 = | 134
3.7.2.1 ANArOid...cceveeeiiieeie e e 134
0 T o Tt 0 = 1= T 135
3.7.3.1 WINAOWS/LINUX..euuieuiiureuieareneessessenresusesssnsesnsensrnsesnsennsensesnsennennses 135
VCil_j1587_message_t StruCtUreccuueiiiiiiiiii e e 135
3.7.3.2 ANArOId. ... iiiii i 136
VCIL_J1587 MESSAGE.......cictuuiiiiitiiieinie ettt s s e s s e e e e aa s ena e ees 136
3.7.4 APIS et e 137
3.7.4.1 VCIl_J1587 _read.....ccccevuiiiiiiiieiiie et 137
3.7.4.2 vcil _j1587 _read_multi......cccoorimriiiiiiii i 138
3.7.4.3 VCIl_J1587 WIItE cevruiieiri e s r e e e n e nn s 139
3.7.4.4 vcil_j1587_add_maskccceiiiiriiiiiiii i 140
3.7.4.5 vcil_j1587_get_mask_NUMDEFc.ceiiiiiiiiiiiii e 141
3.7.4.6 vcil_j1587_get_all_maskcccivuuiiiiiiiiiiin e 142
3.7.4.7 VCil_j1587_remove_MaSsKccuieiiiruiiiirninieinin e se s s e s s s eenas 143

3.7.4.8 vcil_j1587_remove_all_masK........ccooriiiiiiiiiii e 144

3.7.4.9 VCil_j1587_Set_eVent.......coiiiiiiiii i 145

3.7.4.10 vcil_j1587_set_event_handlerc...cccviiiiiiiiiiiiiiinn e 146
3.7.4.11 vcil_j1587_unset_event_handler............ccoeriiiiiiiiiiiiincien e, 147
3.7.4.12 vCil_j1587_wait_eVvent.....ccccciiiiiiiiiiii e 148

3.8 Cradle FUNCHIONS......cccuuuiiiiiiiii i s e e 149

B 8L APIS 149
3.8.1.1 vcil_cradle_set_detach_event........ccciiiiiiiiiiiiiiirr e, 149

3.8.1.2 vcil_cradle_set_attach_event.........cccuviiiiiiiiiiiiiii e, 150

3.8.1.3 vcil_cradle_get_statuscccooeiriiiiiiiiiiiiii e 151

L o oo [1] 152
e o 0 = B = o N 152

4.2 This following figure describes how to write CAN messages to CAN bus by using
SDK APIS. .ttt e ettt ettt 152

MRM VCIL User Manual

1 Introduction

1.1 VCIL Overview

MRM VCIL SDK is a set of libraries for user to control the vehicle communication protocols on devices
which are equipped with VCIM (Vehicle Communication Interface Module) MCU. VCIM supports two CAN
ports for CAN, J1939, OBD2 protocols, and one J1708 port for J1708, J1587 protocols and controls the

data flow of those protocols on the data buses.

MRM VCIL SDK provides APl modules for applications to control each protocol to achieve various

purposes. The software stack of SDK can be described as the following figure.

Application

VCIL

VCL CAN J1939 0BD2 11587

CANBUS1 CANBUS 2 J1708 BUS 1
(CAN,J1939,08D2) (CAN, 11939,0BD2) (/11708,11587)

9/153

MRM VCIL API supports the following platforms:

For Windows / Linux:
The MRM VCIL API is designed as a library (vcil.dll / vcil.so) for the customer's APP to load and

access.

Prior to use VCIL APIs, you should call vcil_init(). Normally the API should return 32-bits error code
MRM_ERR_NO_ERROR(0). You must confirm the return value to ensure that the command is work.

After calling vcil_init(), the library will initialize VCIL and start to accept command.

For Android:

The MRM VCIL API is designed as libraries for the customer's APP to load and access

The MRM VCIL API for Android includes three parts:
o0 MRM Data Classes And Constants Definitions (MrmDef.jar)
o MRM Java APIs (MrmJni.jar)

o Native libs (libvcildni.so, libvcil.so)

To use the VCIL, you must import the above libraries in your APP project.
In your APP, you must call vcil_init() to initialize the MCU before accessing the VCIL APIs and call

vcil_deinit() to release allocated resources before your APP is destroyed.

MRM VCIL User Manual

1.2 System Requirements

Hardware:
e VCIL Module

Operating system:

e \Windows
e Linux
e Android

Recommended Development Tool
e Visual Studio 2008 or above

e GCC 4.6+

e Android Studio 1.3.2+

11/153

2 Using VCIL

2.1 VCIL Conventions

2.1.1 Windows/Linux

Basic APl usage

1.

2.

3.

o Each VCIL API has a prefix "vcil_" immediately followed by the function name and the
operation name.
O To use the VCIL APIs, you must first initialize the library and deinitialize before your APP is
closed.
The flow is described as following:
1. You mustvcil init() before using the other IVCP APIs.
2. Call VCIL APlIs.
3. You must call vcil deinit() before you APP closed.

Application VCIL

veil_init()

Initialize >
VCILAPIs

ex: vcil firmware get version

Call VCIL APIs { — S 0) >
vcil_deinit()

Deinitialize

O Any read type API using the pass by pointer. You should ensure the pointer be not released
during the API processing and the pointer is valid.
O You should always check the return value equal MRM_ERR_NO_ERROR(0), in order to

ensure the command working.

2.1.2 Android

e SDK Namespaces
o mrm.VCIL
®" The class of VCIL API.
o mrm.define.VCIL
®= The definition of data structures used by VCIL API.
o mrm.define. MRM_ENUM
® The definition of enumeration values used by VCIL API.
o mrm.define. MRM_CONSTANTS
= The definition of constants used by VCIL API.
o mrm.define. MRM_ERROR

= The definition of error codes.

e Basic APl usage
o Each VCIL API has a prefix "vcil_" immediately followed by the function name and the
operation name
O You must create an instance of mrm.VCIL to usage VCIL APIs .
O To use the VCIL APIs, you must first initialize the library and deinitialize before your APP is
closed.
The flow is described as following:
1. You must vcil init() before using the other IVCP APIs.
2. Call VCIL APIs.
3. You must call vcil deinit() before you APP closed.

Application VCIL

vcil_init()
1. Initialize >

VCILAPIs

ex: vcil firmware get version
2. call VCILAPIs (= _get_ 0)

¥

vcil_deinit()
3. Deinitialize >

O APIs for reading data need an array for argument to store data. The array should be allocated

before you pass it to the API and the data will be stored at index 0 of the array.
O You should always check the return value of APIs for error checking. The value should equal to
MRM_ERR_NO_ERROR(0) when success or other value when failed.

MRM VCIL User Manual

2.2 C++ with Visual Studio

1. Right Click on Project to enter Project Properites
2. Add #include "vcil/vcil.h" to your program

3. Select Linker and Input page. Set Additional Dependencies "vcil.lib"

15/153

MRM VCIL User Manual

2.3 JAVA with Android Studio

To access VCIL funtions from your APP, you must import the VCIL libraries into you project.

Please find the MrmJni.jar, MrmDef.jar and jniLibs/ folder in the MRM SDK package.
Copy the MrmJni.jar, MrmDef.jar to the directory /[Module Name]/libs/ in your Android Studio
project (the default module name might be "app") and copy the jniLibs/ folder to the directory

/[Module Name]/src/main/ .

N v BT

E3 vCILSample DASVMN_space\SDK_Vd\h
3 .gradle
[idea
[E app
3 build
[libs
» |1 MrmDef jar

4 LProjet

& Captures

| ” Mrmdni jar
[src
[androidTest
] DMSSTOS
[main

[java

[res
%3 AndroidManifestxml

Then import the Java libraries by following the steps below:
o Right click on you APP module. Click "Open module settings"

16 /153

'+ 1 Project

l:: T structure

(5 Captures

| wariants

O

MRM VCIL User Manual

N

B Project - | © &% | #- 1| © MainActivityja
Es IVCPSample (D3 5VM_space’ SDE_ VA trunk\sampleiv
3 .gradle
[idea
i app
1 build New
[libs &b Cut Ctrl+X
2| MrmDefjar [Copy Ctrl+C
! MrmSenviceClie Copy Path Ctrl+Shift+C
[src Copy as Plain Text
[zl .gitignore Copy Reference Cirl+Alt+Shift+C
Il app.iml [Paste Ctrl+W
(2* build.gradle Find Usages Alt+F7
B proguard-rules.prc Find in Path.. Ctrl+Shift+F
3 build Replace in Path... Ctrl+Shift+R
[gradle Analyze
Cout Refactor
B .gitignore

(#* build.gradle

[l gradle.properties

5] gradlew
[E] gradlew.bat

Il IVCPSample.iml
[l local properties
(# settings.gradle

i} External Libraries

Find Usages of mHandler in Project

Value read (19

%

va
x @ -+

2 6] !

Add to Favorites

Show Image Thumbnails Ctrl+Shift+T
Reformat Code... Ctrl+Alt+L
Optimize Imports... Ctrl+Alt+0
Make Module ‘app’ Ctrl+Shift+F9
li‘ Create 'All Tests'_..
P Run Al Tests' Ctrl+Shift+F10

#k Debug 'All Tests'

Local History
Subrversion

(D Synchronize 'app’
Show in Explorer

File Path

it Compare With.__

Open Module Settings

@ Create Gist...
L WlainActivity.java (11 ussges)

Ctrl+Alt+F12

Ctrl+D

Click the "Dependency" tab. Then click "+" -> "File dependency"

177153

MRM VCIL User Manual

Project Structure

spaloid uas

aF = Pmpemesl S\gmngl F\avorsl Build Types Dependencies

SDK Location |

finclude=[* jar], dir=libs} Compile

Project
Developer Services M com.android support:appcompat-v7:22.0.0 Compile

| Ads

Analytics

m 1 Library dependency

File dependency

[% 3 Module dependency

Authentication
Notifications
Modules
app

o Select the lib file.

aceng X O Hide path
e

vdtrunksampletweilandroid\WCILSampletapphlibsyWMrmDef jar |2
| 3 build
3 libs

|

i Mrrmdnijar
[src

Drag and drop a file into the space above to quickly locate it in the tree

"o ey

O Repeat the above steps to add all libs and you will see all libs are added to the list.

+ — F'roperties| Signing | Fla\rorsl Build Types Dependencies|
SDK Location | Scope +
Project {include=[*jar], dir=libs} Compile | _
Developer Services| | | M junitjunit:4.12 Test compile v +
Ads M com.android.supportappcompat-v7:22.2.1 Compile v
Authentication ol |- y] o . +

i Compile
Motifications _ .

Compile
Modules

18 /153

MRM VCIL User Manual

3 Application Programming Interface

3.1 VCIL Management Functions
3.1.1 Usage

3.1.1.1 Basic Usage
Windows/Linux
Please refer to the VCIL Conventions for basic usage for Windows/Linux.

Android

Please refer to the VCIL Conventions for basic usage for Android.

19/153

3.1.1.2 Protocol Mode Setting
Windows/ Linux/ Android

Application VCIL

vcil_init()

Y

1. Initialize

2. call APIs vcil_set_mode()

v

o vcil_deinit()
3. Deinitialize

To start using VCIL APIl module and related modules, you should first call vcil_init() before using the other
VCIL APIs. To stop using VCIL module, you must call vcil_deinit() to close API.

To set the activated protocols for each port, you can use vcil_set_mode() to set.

The available modes for each CAN Port are as followings:

e (0) VCIL_MODE_CAN - CAN protocol (DEFAULT)
e (1) VCIL_MODE_J1939 - J1939 protocol
e (2) VCIL_MODE_ODB2 - OBD2 protocol

The available modes for each J1708 Port are as followings:

e (3) VCIL_MODE_J1708 - J1708 protocol (DEFAULT)
e (4) VCIL_MODE_J1587 - J1587 protocol

For example,

to activate CAN on CAN port 0, J1939 on CAN port 1 and J1708 on J1708 port 0, you can call the API with
following parameters -

vcil_set mode(VCIL_MODE_CAN, VCIL_MODE_J1939, VCIL_MODE_J1708).

To reset the MCU, you can use vcil_firmware_reset().

MRM VCIL User Manual

3.1.2 Enumeration

3.1.2.1 Windows/Linux

vcil_mode Enum

(0) VCIL_MODE_CAN - Active at RAW CAN mode.
(1) VCIL_MODE_J1939 - Active at J1939 mode.
(2) VCIL_MODE_OBD?2 - Active at OBD2 mode.
(3) VCIL_MODE_J1708 - Active at J1708 mode.
(4) VCIL_MODE_J1708 - Active at J1708 mode.

21/153

MRM VCIL User Manual

3.1.2.2 Android

VCIL_MODE

class:
mrm.define. MRM_ENUM.VCIL_MODE

Enum:

[VCIL_MODE_CAN [lint llo |[Active at CAN mode. |
[VCIL_MODE_J1939 |fint 1 ||Active at J1939 mode. |
|VCIL_MODE_OBD?2 |lint |l2 ||Active at OBD2 mode. |
[VCIL_MODE_J1708 |fint |3 |[Active at J1708 mode. |
[VCIL_MODE_J1587 |jint |la ||Active at J1587 mode. |
Remark:

Use the method getValue() to get the enum value.
ex: MRM_ENUM.VCIL_MODE.VCIL_MODE_J1939.getValue() returns 1.

Please refer to sample code for detailed usage.

22 /153

MRM VCIL User Manual

3.1.3 Constant

3.1.3.1 Android

Class:
mrm.define. MRM_CONSTANTS

Fields:

[FeldName [Type [vaue |
[VCIL_EVENT_ID_UNKNOWN |[int -1 |
VCIL_EVENT_ID_RECEIVED_MSl||int 0

G_CAN

VCIL_EVENT_ID_RECEIVED_MS||int 1

G_J1939

VCIL_EVENT_ID_RECEIVED_MS||int 2

G_OBD2

VCIL_EVENT_ID_RECEIVED_MS||int 3

G_J1708

VCIL_EVENT_ID_RECEIVED_MS||int 4

G_J1708

23/153

3.1.4 APIs

3.1.4.1 vcil_init
Syntax:
|Windows / Linux || mrm_err vcil_init(char *port)
[Android || int veil_init(String port)
Description:

Initialize the VCIL library.

Parameters:
port [in]

Pointer to a buffer that will hold the string of VCIL device path. For C, the path string is end of "\O'.
Example:
port = "W\COM7" for Windows
port = "/dev/ttyA0" for Linux
port = "/dev/ttyAQ" for Android (default)
port = "/dev/ttyUSB7" for Android (TREK-734 only)

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:
Prior to calling any VCIL API function the library needs to be initialized by calling this function. The
return code for all VCIL API function will be MRM_ERR_LIBRARY_NOT_INIT unless this function is

called.

3.1.4.2 vcil_deinit

Syntax:
| Windows / Linux || mrm_err vcil_deinit(void)
| Android |[int vcil_deinit()
Description:

Deinitialize the VCIL library.

Parameters:

None.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

3.1.4.3 vcil_get_version

Syntax:

| Windows / Linux || mrm_err vcil_get_version(char *version)

| Android || int vcil_get_version(byte[] version)

Description:
Get the version of SDK.

Parameters:
version [out]
Pointer to a buffer that will hold the version of SDK. The buffer is C string that end of "\0'. The

content of unused bytes filled 0x00.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remark:
The maximum length of version string is IVCP_MAXIMUM_LIBRARY_STRING_LENGTH(24)

3.1.4.4 vcil_set_mode

Syntax:

mrm_err vcil_set_mode(vcil_mode can_port0, vcil_mode can_portl, vcil_mode

Windows / Linux j1708_port0)

| Android || int vcil_set_mode(int can_port0, int can_portl, int j1708_port0)

Description:

Set the protocol mode of each port.

Parameters:
can_port0 [in]
Setup the CAN port 0 protocol mode.
can_portl [in]
Setup the CAN port 1 protocol mode.
j1708_port0 [in]
Setup the J1708 port O protocol mode

For the definition of mode ID,
For Windows/Linux, please refer to vcil_mode.
For Android, please refer to VCIL_MODE.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

3.1.4.5 vcil_get_mode
Syntax:

mrm_err vcil_get_mode(vcil_mode *can_port0, vcil_mode *can_portl, vcil_mode

Windows / Linux *11708_port0)

|Android || int vcil_get_mode(int]] can_port0, int[] can_portl, int[] j1708_port0)

Description:

Get the protocol mode of each port.

Parameters:
can_portO0 [out]
The current CAN port 0 protocol mode.
can_portl [out]
The current CAN port 1 protocol mode.
j1708_port0 [out]
The current J1708 port 0 protocol mode.

For the definition of mode ID,
For Windows/Linux, please refer to vcil_mode.
For Android, please refer to VCIL_MODE.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

MRM VCIL User Manual

3.2 Firmware Management Functions
3.2.1 Usage

3.2.1.1 Basic Usage
Windows/Linux
Please refer to the VCIL Conventions for basic usage for Windows/Linux.

Android

Please refer to the VCIL Conventions for basic usage for Android.

29/153

MRM VCIL User Manual

3.2.2 Constant

3.2.2.1 Android

Class:
mrm.define. MRM_CONSTANTS

Fields:
VCIL_MAXIMUM_FIRMWARE_VE]||int 16

RSION_LENGTH

30/153

3.2.3 APIs

3.2.3.1 vcil_firmware_get_version

Syntax:
|Windows / Linux || mrm_err vcil_firmware_get_version(char *version)
|Android || intvcil_firmware_get_version (byte[] version)
Description:

Get the version of firmware.

Parameters:
version [out]
Pointer to a buffer that will hold the version of firmware. The buffer is C string that end of '\Q'. The

content of unused bytes filled 0x00.

Returns:
MRM_ERR_NO_ERROR - On success.
Otherwise see the error code list.
Remark:
The maximum length of version string is VCIL_MAXIMUM_FIRMWARE_VERSION_LENGTH(16)

3.2.3.2 vail_firmware_reset

Syntax:
| Windows / Linux || mrm_err vcil_firmware_reset(void)
|Android || int vcil_firmware_reset()
Description:

Reset the VCIL firmware.

Parameters:

none

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:

All function mask/filter will be reset after call this function.

MRM VCIL User Manual

3.3 CAN Functions
3.3.1 Usage

3.3.1.1 Basic Usage
Windows/Linux

Please refer to the VCIL Conventions for basic usage for Windows/Linux.
Also, before using CAN related APIs, you must first set the protocol mode of proper CAN port to CAN

mode. Please refer to the protocol mode setting section.

Android

Please refer to the VCIL Conventions for basic usage for Android.
Also, before using CAN related APIs, you must first set the protocol mode of proper CAN port to CAN

mode. Please refer to the protocol mode setting section.

33/153

3.3.1.2 CAN Bus Speed Setting

Windows/ Linux/ Android

To start data transmission of CAN, J1939, OBD2 protocol on CAN bus, you must first configure the CAN
bus speed for MCU.

This following figure describes how to set CAN bus speed through SDK.

Application VCIL

vcil_init()

v

1. Initialize

2. Set CAN Bus vcil_can_set_speed|)

Speed

A4

3. Deinitialize veil_deinit()

3.3.1.3 CAN Message Reading

This section describes how to read CAN messages from CAN bus by using SDK APIs.

The CAN bus speed must be set correctly before you do read/write operation. Please refer to CAN Bus

Speed Setting section for the details.

Windows/Linux

You can implement your CAN message reading application in either Polling or Event Handling style.

e Polling:

Application VCIL

vcil_init()

Y

1. Initialize

2. Call APIs

Loop getting

_ vcil_can_read()
received msg

I Return received CAN message

vcil_deinit()

3. Deinitialize

The most simple way to get received message is to hold a loop in your APP and keep calling
vcil_can_read() to get received message from SDK internal buffer.

The advantage of reading messages in polling style is that it is simple and relatively lower overhead (i.e. no
event handling) to read a message.
The disadvantage is that you need to keep your APP's process reading message even when there is

actually no message in SDK internal buffer, which may result in unnecessary power consuming.

e Event Handling:

Application VCIL

vcil_init()

v

1. Initialize

vcil_can_set_event()

v

2. Call APIs

Loop waiting

I Return received CAN message

i

1

1

for event H

- 1

i Wait for) Trigger event H

! event) When CAN message received | |

1

! B [I
I

i ' | !

! LOOP getting vcil_can_read() I i

| | received msg > I

| ; i

: | 1

I I !

o vcil_deinit()
3. Deinitialize >

To read messages in event handling style, you need to call vcil_can_set _event() first to register an event to

CAN API module. When MCU receive a CAN message from CAN bus, SDK adds the received message to

internal buffer and trigger the registered event.

You need to hold an event listening loop in your APP to handle the registered event. When the event is
triggered, you can then run a loop to calling vcil_can_read() to get and consume the received messages
from the internal buffer. After all messages in buffer are consumed, you should keep listening the

registered event. Please refer to the sample code for the details of implementation.
The advantage of reading messages in event handling style is that APP's process only work when there
are messages can be read, which relatively cost less system resources and power.

The disadvantage is that there would be some overhead of event handling to read a message.

Please refer to the sample code for implementation details.

Android

You can implement your CAN message reading application in either Polling or Event Handling style.

e Polling:

Application VCIL

vcil_init()

v

1. Initialize

2. Call APIs

Loop getting

_ vcil_can_read()
received msg

I Return received CAN message

L vcil_deinit()
3. Deinitialize

The most simple way to get received message is to hold a loop in your application and keep calling

vcil_can read() or vcil can read multi() to get received message(s) from SDK internal buffer.

The advantage of reading messages in polling style is that it is simple and relatively lower overhead (i.e. no
event handling) to read message(s).
The disadvantage is that you need to keep your application process reading message even when there is

actually no message in SDK internal buffer, which may result in unnecessary power consuming.

e Event Handling:

Application VCIL Service

1. Initilaize vcil_init()

v

vcil_can_set_event_handler()

2. Call APIs

Handler

Hanler. handleMessage () | Trigger event
triggered When CAN message received

vcil_can_wait_event(FALSE)

LOOP getting vcil_can_read()
received msg >

Return received CAN message

[

vcil_can_unset_event_handler()

3. Deinitiali
einitialize vcil_deinit()

MRM SDK leverage the Android Handler mechanism to inform CAN message receive event.

To read messages in event handling style, you need to create an instance of Handler and call

vcil_can_set_event_handler() first to register the Handler instance to VCIL. When MCU receive a CAN

message from CAN bus, VCIL adds the received message to internal buffer and trigger the event to inform

registered handler.

When the event is triggered, the handleMessage() callback of registered handler instance will be triggered.

you can then run a loop to calling vcil_can_read() or vcil_can _read multi() to get and consume the

received messages from the internal buffer.

Due to that VCIL will trigger event whenever it receive a CAN message, to avoid from getting multiple

unnecessary events, you should call vcil can wait event(FALSE) to ask VCIL temporarily stop passing

event to handler before your APP start the alarm data getting loop.

After all messages in buffer are consumed, you should call vcil_can_wait_event(TRUE) to ask VCIL

continue the event informing.

If you do not need to listen to alarm event anymore, you should call vcil_can_unset_event handler() to

unregister the Handler instance from VCIL.
The advantage of reading messages in event handling style is that application process only work when

there are messages can be read, which relatively cost less system resources and power.

The disadvantage is that there would be some overhead of event handling to read a message.

Please refer to the sample code for implementation details.

3.3.1.4 CAN Message Writing

Windows/ Linux/ Android

This following figure describes how to write CAN messages to CAN bus by using SDK APIs.

The CAN bus speed must be set correctly before you do read/write operation. Please refer to CAN Bus
Speed Setting section for the details.

Application VCIL

vcil_init()

A J

1. Initialize

2. Call APIs vcil_can_write()

Y

vcil_deinit()

3. Deinitialize

MRM VCIL User Manual

3.3.1.5 CAN Acceptance filter Settings

In the car system there might be many nodes on the bus and the number of CAN messages transmitted to
the bus might be enormous. Due to the performance and application purpose concerns, it might not be a
good idea to try to process all messages on the bus. To focus on the messages you interest in, you can
use the filter functions provided by VCIL MCU.

VCILSDK

e
CAN Channel 1

Pass message

Filter 0 Identifier 0 if matched any filter

Msg From
Channel 1 b
Drop message

Application

CAN Message
[igenter | _ows_

CAN Channel 2

The VCIL MCU provides 14 configurable CAN identifier filter banks for filtering the incoming messages for
each CAN channel. The filters act as "white list". If the CAN channel is configured to work with filters, the
MCU which will only receive the CAN messages which match the filter conditions and drop others.

For each filter, a identifier value and mask is set. The identifier value defines a desired identifier and the
mask defined the bits of identifier the filter care about. If the mask of filter is set to O, then it means the filter
"don't care" any bit of the identifier and all CAN messages from the bus will be passed through this filter.
When VCIL MCU get a CAN message from bus, it AND the identifier of message and the identifier of each
filter with mask to test whether the message should be passed or not.

The following are examples of filter mask setting.

e Accepted example

If we set a filter with mask value =[1 1111 10 0] (OxFC) and identifier =[1 01 1 1 0 1 0](0xBA), then
MCU will care the first 6 bits of the identifier.

Thus MCU will only accept messages with identifier OxB8~BA. (Binary:1011 = Hex:B)

oo
2 EX
e
s oo e g
]]i]ifofo

l = Accept ID OxB8~BA

Received] 1 J o1 Jofi]ofi]o

| Mask | 1

41/ 153

e Unaccepted example

If we set a filter with mask value =

MRM VCIL User Manual

MCU will care the all bits of the identifier.
Thus MCU will only accept messages with identifier OXBA.

:

Mask

[11111111](0xFF)and identifier=[101 110 1 0](0OxBA), then

1ol

Received) 1 J o 1Jo]ijod1]o

The following shows examples of filtering.

e Example - Single filter

CAN MASK Configuration

Receive CAN data Result

Filter 1:
CAN ID=10111010b (0OXxBA)
Mask =11111111b (OXFF)

10111010 (OxBA) Accept

Filter 1:
CAN ID=10111010b (0OXxBA)
Mask =11111111b (OXFF)

10111011 (OxBB) Drop

CAN MASK Configuration

Receive CAN data Result

Filter 1:
CAN ID=10111010b (0xBA)
Mask = 11111100b (0xFC)

10111000 (0xB8) Accept

Filter 1:
CAN ID=10111010b (0xBA)
Mask = 11111100b (OxFC)

10111001 (0xB9) Accept

Filter 1:
CAN ID=10111010b (OxBA)
Mask = 11111100b (OxFC)

10111010 (OxBA) Accept

Filter 1:
CAN ID=10111010b (0OxBA)

Mask = 11111100b (OxFC)

10111100 (OxBC) Drop

Example - Multiple filters

You can set multiple filter at same time for multiple range of targets. For example, 1D 0x28~0x37 and

0x3000~0x31FF and 0x1600

| CAN MASK Configuration

| Receive CAN data | Result

42 /153

Filter 1:
CAN 1D=0000000000101000b (0x0028),
Mask =1111111111111110b (OXxFFFE)

Filter 2:
CAN ID=0000000000110000b (0x0030)
Mask =1111111111111000b (OxFFF8)

Filter 3:
CAN ID=0011000000000000b (0x3000)
Mask =1111111000000000b (0xFEQOQ)

Filter 4:
CAN 1D=0001011000000000b (0x1600)
Mask =1111111111111111b (0XFFFF)

00101000b(0x29)

Accept

Filter 1:
CAN ID=0000000000101000b (0x0028)
Mask =1111111111111110b (OXFFFE)

Filter 2:
CAN ID=0000000000110000b (0x0030)
Mask =1111111111111000b (OxFFF8)

Filter 3:
CAN ID=0011000000000000b (0x3000)
Mask =1111111000000000b (0xFEQOQ)

Filter 4:
CAN ID=0001011000000000b (0x1600)
Mask =1111111111111111b (OXFFFF)

01001000b(0x48)

Drop

Filter 1:
CAN ID=0000000000101000b (0x0028)
Mask =1111111111111110b (OXFFFE)

Filter 2:
CAN ID=0000000000110000b (0x0030)
Mask =1111111111111000b (0xFFF8)

Filter 3:
CAN ID=0011000000000000b (0x3000)
Mask =1111111000000000b (0OxFE0O0)

Filter 4:
CAN ID=0001011000000000b (0x1600)
Mask =1111111111111111b (OXFFFF)

0011000100000010b(0x3102)

Accept

Filter 1:
CAN ID=0000000000101000b (0x0028)
Mask =1111111111111110b (OXFFFE)

Filter 2:
CAN ID=0000000000110000b (0x0030)
Mask =1111111111111000b (OxFFF8)

Filter 3:
CAN ID=0011000000000000b (0x3000)
Mask =1111111000000000b (OxFEOO)

Filter 4:
CAN 1D=0001011000000000b (0x1600)
Mask =1111111111111111b (0OXFFFF)

0011001000000000b(0x3200)

Drop

Windows/ Linux/ Android

e To get/set filter:

Call vcil_can_set_mask() to set the mask and call vcil_can_get _mask() to get mask.

Application

VCIL
vcil_init()
1. Initialize >
2. Call APIs
vcil_can_set_mask()
Set filter >
vcil_can_get_mask()
Get filter >
Return struct of filter value
3. Deinitialize veil_deinit()
e Toremove specific filter:
Call vcil_can_remove_mask() to remove filter of specified filter bank.
Application VCIL

vcil_init()
1. Initialize

2. Call APIs

L vcil_can_remove_mask()
Remove specific filter

A J

vcil_deinit()
3. Deinitialize

v

e Toremove all filter:

Call vcil_can_reset _mask() to reset all filter.

1.

2.

3.

Application

Initialize

vcil_init()

VCIL

Call APIs

Reset all filters

vcil_can_reset_mask()

v

Deinitialize

vcil_deinit()

Y

3.3.2 Enumeration
3.3.2.1 Windows/Linux

vcil_can_speed Enum

(0) VCIL_CAN_SPEED_125K - The CAN bus speed at 125Kbits.
(1) VCIL_CAN_SPEED_250K - The CAN bus speed at 250Kbits.
(2) VCIL_CAN_SPEED_500K - The CAN bus speed at 500Kbits.
(3) VCIL_CAN_SPEED_1M - The CAN bus speed at 1Mbits.

(4) VCIL_CAN_SPEED_200K - The CAN bus speed at 200Kbits.
(5) VCIL_CAN_SPEED_100K - The CAN bus speed at 100Kbits.
(6) VCIL_CAN_SPEED_800K - The CAN bus speed at 800Kbits.
(7) VCIL_CAN_SPEED_83K - The CAN bus speed at 83.333Kbits.
(8) VCIL_CAN_SPEED 50K - The CAN bus speed at 50Kbits.

(9) VCIL_CAN_SPEED_ 20K - The CAN bus speed at 20Kbits.
(10) VCIL_CAN_SPEED_10K - The CAN bus speed at 10Kbits.
(11) VCIL_CAN_SPEED 5K - The CAN bus speed at 5Kbits.
(OxFF) VCIL_CAN_SPEED_USER_DEFINE - current bit-rate is user-define.

vcil_can_bus_mode Enum

(0) VCIL_CAN_BUS_NORMAL_MODE -
CAN controller operates in normal mode. In normal mode, CAN controller synchronize the bit traffic on

the CAN bus and is able to receive/transmit CAN messages.

(1) VCIL_CAN_BUS_LISTEN_MODE -

CAN controller operates in listen mode. In listen mode, the CAN controller is only able to receive valid
data frames and remote request frames and NOT able to transmit. The CAN controller only monitor the
bit traffic on bus without interfering the bus (e.g. keep in recessive state) and NO dominant bit will be
sent (i.e. Acknowledge Bits, Error Frames) .

Listen mode can be used to monitor the traffic on a CAN bus without interfering the bus.

(2) VCIL_CAN_BUS_INIT_MODE -
CAN controller operates in initiation mode. In Initialization Mode, the CAN controller is uninitialized and
stops transmitting and receiving to/from the CAN bus, and dose not interfere the bus traffic (keeps bus

output in recessive state).

3.3.2.2 Android
VCIL_CAN_SPEED

class:

mrm.define. MRM_ENUM.VCIL_CAN_SPEED

Enum:

| Name | Type || value | Comment |
IVCIL_CAN_SPEED_125K [lint llo || 125 kbit/s |
IVCIL_CAN_SPEED_250K [lint IR |[250 khit/s |
IVCIL_CAN_SPEED_500K |lint |2 ||500 kbit/s |
IVCIL_CAN_SPEED_1M [lint I3 |[1M bit/s |
IVCIL_CAN_SPEED_200K [lint |l |[200 kbit/s |
IVCIL_CAN_SPEED_100K |lint |I5 ||200 kbit/s |
IVCIL_CAN_SPEED_800K [lint |l6 |[800 kbit/s |
IVCIL_CAN_SPEED_83K [lint |7 |83 kbit/s |
IVCIL_CAN_SPEED_50K |lint I8 ||50 kbit/s |
IVCIL_CAN_SPEED_20K [lint I ||20 kbit/s |
IVCIL_CAN_SPEED_10K [lint |10 |10 kbit/s |
IVCIL_CAN_SPEED_5K |lint |21 ||5 kbit/s |
IVCIL_CAN_SPEED_USER_DEFINE [lint |loxFF ||luser-defined bit-rate |

Remark:

Use the method getValue() to get the enum value.

ex: MRM_ENUM.CAN_SPEED.VCIL_CAN_SPEED_250K.getValue() returns 1.

Please refer to sample code for detailed usage.

VCIL_CAN_BUS_MODE

class:

mrm.define. MRM_ENUM.VCIL_CAN_BUS_MODE

Enum:

Name

|[Type]| value ||

Comment

VCIL_CAN_BUS_NORMAL _
MODE

int 0

CAN controller operates in normal mode.
In normal mode, CAN controller synchronize the bit traffic
on the CAN bus and is able to receive/transmit CAN

messages.

VCIL_CAN_BUS_LISTEN_M
ODE

int 1

CAN controller operates in listen mode.

In listen mode, the CAN controller is only able to receive
valid data frames and remote request frames and NOT able
to transmit. The CAN controller only monitor the bit traffic
on bus without interfering the bus (e.g. keep in recessive
state) and NO dominant bit will be sent (i.e. Acknowledge
Bits, Error Frames) .

Listen mode can be used to monitor the traffic on a CAN

bus without interfering the bus.

VCIL_CAN_BUS_INIT_MOD
E

int 2

CAN controller operates in initiation mode.
In Initialization Mode, the CAN controller is uninitialized and
stops transmitting and receiving to/from the CAN bus, and

keep the bus output in recessive status.

Remark:

Use the method getValue() to get the enum value.
ex: MRM_ENUM.VCIL_CAN_BUS_MODE.VCIL_CAN_BUS_LISTEN_MODE.getValue() returns 1.

Please refer to sample code for detailed usage.

MRM VCIL User Manual

3.3.3 Constant

3.3.3.1 Android

Class:
mrm.define. MRM_CONSTANTS

Fields:
[VCIL_MAX_CAN_DATA_SIZE |[int |8 |

50/153

3.3.4 Structure/Classes
3.3.4.1 Windows/Linux
vcil_can_message_t Structure

Syntax:

typedef struct

{
unsigned char port;
char length;
bool remote_request;
bool extended_frame;
unsigned int id;
unsigned char data[8];

} vcil_can_message t;

Description:

This data structure defines the CAN message.

Members:

port
This message come from/send to which port.

length
The standard CAN message data length. This data length should not over
VCIL_MAX_CAN_DATA_SIZE(8).

remote request
This field is used to indicate whether this CAN message is a remote transmit request(RTR) frame.
The value is 1 if the message is a RTR frame(the RTR field of the CAN message identifier is 1).
The value is 0 if the message is not a RTR frame.

extended frame
This field is used to indicate that the message is a standard format(CAN2.0A) or a extended
format(CAN2.0B) message.
The value is 1 if the message is a CAN2.0B message (with 29-bits identifier).
The value is 0 if the message is a CAN2.0A message (with 11-bits identifier).

id
The Identifier of CAN.

data

The data array of CAN message.

vcil_can_mask_t Structure

Syntax:

typedef struct

{
unsigned char type;
unsigned char bank;
bool remote_request;
bool extended_frame;
unsigned int id1;
unsigned int mask1;
unsigned int id2;
unsigned int mask2;

} veil_can_mask_t;

Description:

This data structure defines the hardware CAN mask.

Members:
type
This mask type._This field reserved for furture configuration currently ingnore.
bank
The mask bank, the VCIL supported maximum 14 bank which 0~13. This bank should not over 13.

You can think of the bank is a rule of CAN message hardware filter.
remote request
This field is used to indicate whether this CAN message is a remote transmit request(RTR) frame.
The value is 1 if the message is a RTR frame(the RTR field of the CAN message identifier is 1).
The value is 0 if the message is not a RTR frame.
extended frame
This field is used to indicate that the message is a standard format(CAN2.0A) or a extended
format(CAN2.0B) message.
The value is 1 if the message is a CAN2.0B message (with 29-bits identifier).
The value is 0 if the message is a CAN2.0A message (with 11-bits identifier).
idl
The Identifier 1 of bank.
mask1
The mask 1 of the bank.
id2
The Identifier 2 of bank.
This field will be ignored if extended frame is set to 1.
mask?2
The mask 2 of the bank.

This field will be ignored if extended frame is set to 1.

vcil_can_error_status Structure

Syntax:

typedef struct

{
unsigned int rec; // receive error counter
unsigned int tec; // transmit error counter
unsigned int last_error_code; // last error code
unsigned int error_flag;

} vcil_can_error_status;;

Description:

This CAN controller error status.

Members:

rec
receive error counter. The implementing part of the fault confinement mechanism of the CAN
protocol. In case of an error during reception, this counter is incremented by 1 or by 8 depending
on the error condition as defined by the CAN standard. After every successful reception the counter
is decremented by 1 or reset to 120 if its value was higher than 128. When the counter value
exceeds 127, the CAN controller enters the error passive state.

tec
Transmit error counter The implementing part of the fault confinement mechanism of the CAN
protocol.

last_error_code
This field is set by hardware and holds a code which indicates the error condition of the last error
detected on the CAN bus. If a message has been transferred (reception or transmission) without
error, this field will be cleared to ‘0. The LEC[2:0] bits can be set to value 0b111 by software. They
are updated by hardware to indicate the current communication status.

000: No Error

001: Stuff Error

010: Form Error

011: Acknowledgment Error

100: Bit recessive Error

101: Bit dominant Error

110: CRC Error

111: Set by software
error_flag

CAN Bus error flag
bit0: Error warning flag
This bit is set by hardware when the warning limit has been reached (Receive Error Counter or
Transmit Error Counter=96).
bitl: Error passive flag
This bit is set by hardware when the Error Passive limit has been reached (Receive VCIM

Command Specification 124 / 153 Error Counter or Transmit Error Counter>127).

bit2: Bus-off flag
This bit is set by hardware when it enters the bus-off state. The bus-off state is entered on TEC

overflow, greater than 255

3.3.4.2 Android
VCIL_CAN_MESSAGE

class:
mrm.define.VCIL.VCIL_CAN_MESSAGE

Fields:

| Field Name

| Type ||Input/Output ||

Comment

port int

in, out

The port ID which this CAN message is

received from/sent to.

length int

in, out

Length of data of the CAN message. This
data length should not over
VCIL MAX CAN_DATA SIZE(8).

remote_request boolean

in, out

This field is used to indicate whether this
CAN message is a remote transmit

request(RTR) frame.

The value is TRUE if the message is a RTR
frame(the RTR field of the CAN message
identifier is 1).

The value is FALSE if the message is not a
RTR frame.

extended_frame boolean

in, out

This field is used to indicate that the
message is a standard format(CAN2.0A) or

a extended format(CAN2.0B) message.

The value is TRUE if the message is a
CAN2.0B message (with 29-bits identifier).
The value is FALSE if the message is a
CAN2.0A message (with 11-bits identifier).

id int

in, out

The Identifier of the CAN message.

data byte(]

in, out

A byte array containing the data of the CAN

message.

VCIL_CAN_MASK

class:
mrm.define.VCIL.VCIL_CAN_MASK

Fields:

| Field Name | Type

|[iInput/Output ||

Comment

type byte

The mask type.
This field is reserved for future use and

currently ignored.

bank byte

in, out

The mask bank, the VCIL supported
maximum 14 bank which 0~13. This bank
should not over 13. You can think of the
bank is a rule of CAN message hardware
filter.

remote_request boolean

in, out

This field is used to indicate whether this
CAN message is a remote transmit
request(RTR) frame.

The value is TRUE if the message is a RTR
frame(the RTR field of the CAN message
identifier is 1).

The value is FALSE if the message is not a
RTR frame.

extended_frame boolean

in, out

This field is used to indicate that the
message is a standard format(CAN2.0A) or

a extended format(CAN2.0B) message.

The value is TRUE if the message is a
CAN2.0B message (with 29-bits identifier).
The value is FALSE if the message is a
CAN2.0A message (with 11-bits identifier).

id1 int

in, out

The Identifier 1 of bank.

Field Name | Type |[Input/Output || Comment
The mask 1 of the bank.
mask1 int in, out
The Identifier 2 of bank.
id2 int in, out
mask?2 int in, out The mask 2 of the bank.

VCIL_CAN_ERROR_STATUS

class:

mrm.define.VCIL.VCIL_CAN_ERROR_STATUS

Fields:

| Field Name

|L_Type |[Input/Output ||

Comment

rec

int

out

Receive error counter.

The implementing part of the fault
confinement mechanism of the CAN
protocol. In case of an error during
reception, this counter is incremented by 1
or by 8 depending on the error condition as
defined by the CAN standard. After every
successful reception the counter is
decremented by 1 or reset to 120 if its value
was higher than 128. When the counter
value exceeds 127, the CAN controller

enters the error passive state.

tec

int

out

Transmit error counter.
The implementing part of the fault
confinement mechanism of the CAN

protocol.

last_error_code

int

out

This field is set by hardware and holds a
code which indicates the error condition of
the last error detected on the CAN bus.

If a message has been transferred
(reception or transmission) without error,

this field will be cleared to ‘0’.

The LECJ2:0] bits can be set to value 0b111
by software. They are updated by hardware
to indicate the current communication
status.

000: No Error

001: Stuff Error

010: Form Error

011: Acknowledgment Error

100: Bit recessive Error

Field Name

|| Type || Input/Output ||

Comment

101: Bit dominant Error
110: CRC Error
111: Set by software

error_flag

int

out

CAN Bus error flag.

bit0: Error warning flag

This bit is set by hardware when the
warning limit has been reached (Receive
Error Counter or Transmit Error
Counter=96).

bitl: Error passive flag

This bit is set by hardware when the Error
Passive limit has been reached (Receive
VCIM Command Specification 124 / 153
Error Counter or Transmit Error
Counter>127).

bit2: Bus-off flag
This bit is set by hardware when it enters
the bus-off state. The bus-off state is

entered on TEC overflow, greater than 255

3.3.5 APIs

3.3.5.1 vcil_can_read

Syntax:
|Windows / Linux || mrm_err vcil_can_read(vcil_can_message_t *message)
| Android |[int vcil_can_read(VCIL_CAN_MESSAGE message)
Description:

Get a CAN message from VCIL library CAN buffer if available otherwise you may get a error
code(MRM_ERR_VCIL_DATA_NOT_READY) and a invalid CAN message.

Parameters:
message [out]
Windows/Linux:
Pointer to vcil_can_message_t struct which is used to store received CAN message
Android:
Instance of VCIL_CAN_MESSAGE which is used to store received CAN message

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:

You can call this function to receive CAN message from each CAN port.

3.3.5.2 vcil_can_read_multi

Syntax:

[Windows /Linux |[-

int vcil_can_read_multi(List<VCIL_CAN_MESSAGE> messages, int

Android desiredReadNum, int[] resultReadNum)

Description:

Read multiple received CAN messages from the SDK internal buffer.

Parameters:
message [out]
Android:
List of VCIL_CAN MESSAGE which is used to store received CAN messages.

desiredReadNum [in]

The number of CAN message you expect to get.

resultReadNum [out]
An allocated array of size 1 for storing the number of CAN message the SDK actually returned.

The return value will be stored at index 0.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

3.3.5.3 vcil_can_write

Syntax:

| Windows / Linux || mrm_err vcil_can_write(vcil_can_message_t *message)

| Android ||int vcil_can_write(VCIL_CAN_MESSAGE message)

Description:

Write a CAN message to specified CAN port.

Parameters:
message [out]
Windows/Linux:
Pointer to vcil_can_message_t struct that store the CAN message to be sent.
Android:
Instance of VCIL_CAN_MESSAGE which stores the CAN message to be sent.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:

You can call this function to receive CAN message from each CAN port.

3.3.5.4 vcil_can_set_speed

Syntax:

|Wind0ws / Linux || mrm_err vcil_can_set_speed(unsigned char port, vcil_can_speed speed)

| Android |[int vcil_can_set_speed(byte port, int speed)

Description:

Set the specified CAN port bus baud rate.

Parameters:
port [in]
The CAN port. The first port is 0.
speed [in]
The bus baud rate.
For Windows/Linux, please refer to vcil can speed.
For Android, please refer to VCIL_CAN_SPEED.
Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

3.3.5.5 vcil_can_set_speed_listen_mode

Syntax:
Windows / Linux mrm_err vcil_can_set_speed_listen_mode(unsigned char port, vcil_can_speed
speed)
| Android |[int vcil_can_set_speed_listen_mode(byte port, int speed)

Description:
Set the specified CAN port bus baud rate at Listen mode. This mode setup controller only listen data
and not ACK bus.

Parameters:
port [in]
The CAN port. The first port is 0.
speed [in]

The bus baud rate. The detail please refer to vcil_can_speed.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remark:
Some of bitrate is user-define value for customize , when you setup the specified bitrate and using

vcil_can_get_bitrate may get user-define value

3.3.5.6 vcil_can_get_speed
Syntax:

Windows / Linux

vcil_can_bus_mode *mode)

mrm_err vcil_can_get_speed(unsigned char port, vcil_can_speed speed,

| Android |[int vcil_can_get_speed (byte port, int[] speed, int[] mode)

Description:

Set the specified CAN port bus baud rate.

Parameters:
port [in]
The CAN port. The first port is 0.
speed [out]
The bus baud rate.
For Windows/Linux, please refer to vcil_can_speed.
For Android, please refer to VCIL_CAN_SPEED.

mode [out]

Current mode.
For Windows/Linux, please refer to vcil can _bus mode.
For Android, please refer to VCIL_ CAN_BUS MODE.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

3.3.5.7 vcil_can_get_bus_error_status

Syntax:

Windows / Linux

mrm_err vcil_can_get_bus_error_status(unsigned char port, vcil_can_error_status
*status)

Android

int vcil_can_get_bus_error_status(byte port, VCIL_CAN_ERROR_STATUS
status)

Description:

Get the specified CAN port error status. this API can be using to detect bus error status.

Parameters:

port [in]

The CAN port. The first port is 0.

status [out]

Windows/Linux:

Pointer to vcil _can_error_status struct that will hold the CAN error status.

Android:

Instance of VCIL CAN_ERROR STATUS which is used to store the CAN error status

Returns:

MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

3.3.5.8 vcil_can_set_mask

Syntax:

|Wind0ws / Linux || mrm_err vcil_can_set_mask(unsigned char port, vcil_can_mask_t *mask)

|Android || int vcil_can_set_mask(byte port, VCIL_CAN_MASK mask)

Description:

Set the specified CAN message filter to specified filter bank of specified CAN port and enable it.

Parameters:

port [in]
The CAN port. The first port is 0.
mask [in]
The mask configuration.
For Windows/Linux, please refer to vcil_can_mask t.
For Android, please refer to VCIL_CAN_MASK.

Returns:

MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

The field values of mask should be set base on the type of CAN protocol you want to apply to.
You can set two filters in the a filter bank if you set filter for CAN2.0A and

can set one filter in the a filter bank if you set filter for CAN2.0B.

For example,

If you want to set a CAN2.0A message filters to filter bank O,

you must set the "bank" field of mask to 0 and set "extended frame" field to O(FALSE).
In this case you are allowed to set two filters in filter bank 0.

Set the values of first filter to "id1" and "mask1" field and the second filter to "id2" and "mask?2".

If you want to set a CAN2.0B message filters to filter bank 1,
you must set the "bank" field of mask to 1 and set "extended frame" field to 1(TRUE).
In this case you are allowed to set only one filter in filter bank 1.

Set the value of filter to "id1" and "mask1" field. The values of "id2" and "mask2" will be ignored.

3.3.5.9 vcil_can_get_mask

Syntax:

|Wind0ws / Linux || mrm_err vcil_can_get_mask(unsigned char port, vcil_can_mask_t *mask)

|Android || int vcil_can_get_mask(byte port, VCIL_CAN_MASK mask)

Description:

Get the a CAN message filter from specified filter bank of specified CAN port.

Parameters:
port [in]
The CAN port. The first port is 0.
mask [out]
The mask configuration.
For Windows/Linux, please refer to vcil_can_mask t.
For Android, please refer to VCIL_CAN_MASK.

Returns:

e MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

e You must set the "bank" field of mask to specified which filter bank you want to get from.

3.3.5.10 vcil_can_remove_mask

Syntax:

|Wind0ws / Linux || mrm_err vcil_can_remove_mask(unsigned char port, unsigned char bank)

| Android |[int vcil_can_remove_mask(byte port, byte bank)

Description:

Remove a filter from specified filter bank of specified CAN port

Parameters:

port [in]
The CAN port. The first port is 0.

bank [in]

The bank of the mask to be removed.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:

e [f all bank are removed there will be no rule for passing CAN message. In order words, no CAN

message can passed the filter and be received by the APP.

3.3.5.11 vcil_can_reset_mask

Syntax:

|Wind0ws / Linux || mrm_err vcil_can_reset_mask(unsigned char port)

| Android |[int vcil_can_reset_mask (byte port)

Description:

Reset all filter bank of the specified CAN port

Parameters:
port [in]
The CAN port. The first port is 0.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:
After reset, all bank will be cleared and disabled.
The MCU firmware will automatically add a filter of mask 0 and id O to filter bank O which means pass
all CAN message without checking ant bit of the identifier. All CAN message will pass through this filter
and be received by the APP.

3.3.5.12 vcil_can_set_event

Syntax:

|Wind0ws / Linux || mrm_err vcil_can_set_event(void *can_rx_event)

| Android |-

Description:
Set a user define event in order to let VCIL library notify the specified event when CAN message is

received.

Parameters:
can_rx_event [in]
Pointer to the CAN received event. In windows, the can_rx_event will pointer to a Windows Events
HANDLE. In linux, the can_rx_event will pointer to a struct which consists of a pthread_mutex_t

and pthread_cond_t.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:

You should not close the event before deinitialize VCIL library.

3.3.5.13 vcil_can_set_event_handler

Syntax:

| Android]| intvcil_can_set_event_handler(Handler handler)

Description:

Set handler which handles CAN message received event.

Parameters:
handler [in]

An instance of Handler.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remark:
e Please refer to the usage guide and sample code for details.

e On alarm event triggered, the Handler will receive message with the "what" field equals to
VCIL EVENT ID_RECEIVED MSG_CAN

3.3.5.14 vcil_can_unset_event_handler

Syntax:

|Android]| intvcil_can_unset_event_handler()

Description:

Unregister handler of CAN message received event.

Parameters:

none

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remark:

e Please refer to the usage guide and sample code for details.

3.3.5.15 vcil_can_wait_event

Syntax:

| Android || int vcil_can_wait_event(boolean status)

Description:
Allow/Disallow VCIL to pass CAN message received event to registered handler when a message is

pushed into SDK internal buffer.

Parameters:
status [in]
The status of whether VCIL should pass CAN message received event to registered handler
TRUE: Inform
FLASE: Not to inform

Returns:
IMC_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remark:

e Please refer to the usage guide and sample for details.

MRM VCIL User Manual

3.4 31939 Functions

3.4.1 Usage

3.4.1.1 Basic Usage

Windows/Linux

Please refer to the VCIL Conventions for basic usage for Windows/Linux.

Also, before using J1939 related APIs, you must first set the protocol mode of proper CAN port to J1939

mode. Please refer to the protocol mode setting section.

Android

Please refer to the VCIL Conventions for basic usage for Android.

Also, before using J1939 related APIs, you must first set the protocol mode of proper CAN port to J1939

mode. Please refer to the protocol mode setting section.

75/153

3.4.1.2 11939 Message Reading

The APIs for reading J1939 messages is similar to CAN APIs usage. Please refer to CAN message reading

section, and use corresponding APlIs for J1939 instead.

Also, the CAN bus speed must be set correctly before you do read/write operation. Please refer to CAN

Bus Speed Setting section for the details.

3.4.1.3 J1939 Message Writing

The APIs for writing J1939 messages is similar to CAN APIs usage. Please refer to CAN message writing

section, and use corresponding APIs for J1939 instead.

Also, the CAN bus speed must be set correctly before you do read/write operation. Please refer to CAN

Bus Speed Setting section for the details.

3.4.1.4 J1939 Acceptance filter Settings

Similar with CAN Acceptance Filter, the VCIL MCU provide acceptance filter for J1939 protocol, which can
filter the PGN of J1939 message. The VCIL MCU supports at most 128 PGN filters. A J1939 message with
PGN which is matched with any of the filters will be accepted by MCU.

The APIs for J1939 filter setting is similar to CAN APIs usage. Please refer to CAN Acceptance filter

Settings section for Windows/Linux and Android APIs usage, and use corresponding APIs for J1939

instead.

The following is an example of filter setting. If we set filter with PGN: OxFEF6, OXFE20, 0xF201. When the

received J1939 message's PGN value is OXFEF6, the messages is accepted.

J1939 Filter Configuration Receive J1939 data's PGN value| Result
Filter PGN=0xFEF6 OXFEF6 Accept
Filter PGN=0xFEF6 OXFEF7 Drop

Receive J1939

.) . Result
J1939 Filter Configuration data's PGN value

Filter PGN=0xFEF6 OR OxFE20 OR 0xF201 OXFEF6 Accept
Filter PGN=0xFEF6 OR OxFE20 OR 0xF201 0xF201 Accept
Filter PGN=0xFEF6 OR OxFE20 OR 0xF201 0xF203 Drop

Filter PGN=0xFEF6 OR OxFE20 OR 0xF201 OXFE22 Drop

MRM VCIL User Manual

3.4.2 Constant

3.4.2.1 Android

Class:
mrm.define. MRM_CONSTANTS

Fields:
[VCIL_MAX_J1939_DATA_SIZE |[int |64 |
[VCIL_MAX_J1939_MASK_NUM |[int ||[128 |

771153

3.4.3 Structure/Classes
3.4.3.1 Windows/Linux
vcil_j1939_message_t Structure

Syntax:

typedef struct
{

unsigned char port;

unsigned int pgn;

unsigned char destination;

unsigned char source;

unsigned char priority;

int length;

unsigned char data[VCIL_MAX_J1939 DATA_SIZE];
} veil_j1939 message t;

Description:

This data structure defines the J1939 message.

Members:
port
This message come from/send to which port.
pgn
The parameter group number of this message. currently only support 0 to OX1FFFF
destination
The destination address of this message. 0x00 to OXFF
source
The source address of this message. This field ignored when J1939 write.
priority
The priority of this message. The priority of range is 0 to 7. Normally set to 6.
length
The standard J1939 message data length. The maximum length of data is
VCIL_MAX_J1939 DATA_SIZE(64)
data
The data array of J1939 message.

Remark:
SAE-J1939 defined the longest message is 1785 byte but currently library only supported
VCIL_MAX J1939 DATA_SIZE for performance considered.
The SAE-J1939-81 defined the preferred address. The 255 is defined global address for broadcast and

254 is defined NULL address for the device without address at start.

vcil_j1939_config_t Structure
Syntax:

typedef struct

{
unsigned char address;
unsigned char arbitrary_address_capable;
unsigned char industry_group;
unsigned char vehicle_system_instance;
unsigned char vehicle_system;
unsigned char function;
unsigned char function_instance;
unsigned char ecu_instance;
unsigned short manufacturer_code;
unsigned int identity_number;

} veil_j1939_config_t;

Description:

This data structure defines the configuration of J1939

Members:

address

The device address. This field will affect the J1939 message source address and J1939 address

claiming.
arbitrary_address_capable

The fields of NAME specified in SAE-J1939-81.
industry_group

The fields of NAME specified in SAE-J1939-81.
vehicle_system_instance

The fields of NAME specified in SAE-J1939-81.
vehicle_system

The fields of NAME specified in SAE-J1939-81.
function

The fields of NAME specified in SAE-J1939-81.
function_instance

The fields of NAME specified in SAE-J1939-81.
ecu_instance

The fields of NAME specified in SAE-J1939-81.
manufacturer_code

The fields of NAME specified in SAE-J1939-81.
identity_number

The fields of NAME specified in SAE-J1939-81.

3.4.3.2 Android
VCIL_J1939_MESSAGE

class:

mrm.define.VCIL.VCIL_J1939_MESSAGE

Fields:
| Field Name | Type ||Input/Output || Comment
This message come from/send to which
port byte in, out port.
The parameter group number of this
message. currently only support 0 to
pgn int in, out OX1EEEE
The destination address of this message.
destination byte in, out 0x00 to OxFF
The source address of this message. This
source byte in, out field ignored when J1939 write.
The priority of this message. The priority of
priority byte in range is 0 to 7. Normally set to 6.
The standard J1939 message data length.
The maximum length of data is
length int In, out VCIL MAX J1939 DATA SIZE(64)
data byte[] in, out The array of data of the J1939 message.

VCIL_J1939_CONFIG

class:

mrm.define.VCIL.VCIL_J1939 CONFIG

Fields:
| Field Name || Type || Input/Output || Comment |

The device address. This field will affect the

J1939 message source address and J1939
address byte in, out _—

address claiming.

The fields of NAME specified in SAE-
arbitrary_address_capable byte in, out J1939-81.

The fields of NAME specified in SAE-
industry_group byte in, out J1939-81.

The fields of NAME specified in SAE-
vehicle_system_instance byte in, out J1939-81.

The fields of NAME specified in SAE-
vehicle_system byte in, out J1939-81.

The fields of NAME specified in SAE-
function byte in, out J1939-81.

The fields of NAME specified in SAE-
function_instance byte in, out J1939-81.

The fields of NAME specified in SAE-
ecu_instance byte in, out J1939-81.

The fields of NAME specified in SAE-
manufacturer_code int in, out J1939-81.

The fields of NAME specified in SAE-
identity _number int in, out J1939-81.

MRM VCIL User Manual

82 /153

3.4.4 APIs
3.4.4.1 vcil_j1939_read

Syntax:

|Windows / Linux || mrm_err vcil_j1939_read (vcil_j1939_message_t *message)

| Android |[int vcil_j1939_read(VCIL_J1939_MESSAGE message)

Description:
Get a J1939 message from VCIL library J1939 buffer if available otherwise you may get a error
code(MRM_ERR_VCIL_DATA_NOT_READY) and a invalid J1939 message.

Parameters:
message [out]
Windows/Linux:
Pointer to vcil_j1939 message_t which is used to store received J1939 message
Android:
Instance of VCIL J1939 MESSAGE which is used to store received J1939 message

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:

You can call this function to receive J1939 message from each CAN port.

3.4.4.2 vcil_j1939_read_multi
Syntax:

[Windows /Linux |[-

int veil_j1939 read_multi(List<VCIL_J1939 MESSAGE> messages, int

Android desiredReadNum, int[] resultReadNum)

Description:

Read multiple received J1939 messages from the SDK internal buffer.

Parameters:
message [out]
Android:
List of VCIL J1939 MESSAGE which is used to store received J1939 messages.

desiredReadNum [in]

The number of J1939 message you expect to get.

resultReadNum [out]
An allocated array of size 1 for storing the number of J1939 message the SDK actually returned.

The return value will be stored at index 0.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

3.4.4.3 vcil_j1939_write
Syntax:

| Windows / Linux || mrm_err vcil_j1939 write(vcil_j1939 message_t *message)

| Android [[int vcil_j1939_write(VCIL_J1939_MESSAGE message)

Description:

Write a J1939 message to specified CAN port.

Parameters:
message [out]
Windows/Linux:
Pointer to vcil j1939 message t struct that store the J1939 message to be sent.
Android:
Instance of VCIL J1939 MESSAGE which stores the J1939 message to be sent.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:

You can call this function to receive J1939 message from each CAN port.

3.4.4.4 vcil_j1939_add_mask
Syntax:

|Wind0ws / Linux || mrm_err vcil_j1939 add_mask(unsigned char port, unsigned int pgn)

|Android || int vcil_j1939 add_mask(byte port, int pgn)

Description:
Add a PGN mask to specified CAN port. The mask will allow message with specified PGN able to pass
through the filter and be received by user APP.

Parameters:
port [in]
The CAN port. The first port is 0.
pgn [in]
The PGN mask.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:
After VCIL initialized, by default, all message can pass through the VCIL hardware filter.
After you calling this function once, all message will be blocked except the message with specified
PGN.
If you want only messages with specified PGN pass through the hardware filter, you can call this
function to add more acceptable PGN
The maximum VCIL MAX J1939 MASK NUM (128) masks can be applied.

3.4.4.5 vcil_j1939_get_mask_number

Syntax:
|Wind0ws / Linux || mrm_err vcil_j1939 get_mask_number(unsigned char port, unsigned int* total) |
|Android || intvcil_j1939 get_mask_number(byte port, int[] total) |
Description:

Get the number of J1939 mask of specified CAN port.

Parameters:
port [in]
The CAN port. The first port is 0.
total [out]

The total number of mask PGN.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

3.4.4.6 vcil_j1939_get_all_mask
Syntax:

|Wind0ws / Linux || mrm_err vcil_j1939 get_all_mask(unsigned char port, unsigned int* pgn)

|Android || intvcil_j1939_get_all_mask(byte port, int[] pgn)

Description:
Get the all J1939 masks from specified CAN port

Parameters:
port [in]
The CAN port. The first port is 0.
pgn [out]
Pointer a PGN array, the array size you can get from vcil j1939 get mask number().

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:

You must pass sufficient memory place for this function else your will get segmentation fault

3.4.4.7 vcil_j1939_remove_mask
Syntax:

|Wind0ws / Linux || mrm_err vcil_j1939 remove_mask(unsigned char port, unsigned int pgn)

|Android || intvcil_j1939 remove_mask(byte port, int pgn)

Description:

Remove specified PGN mask from the specified CAN port.

Parameters:
port [in]
The CAN port. The first port is 0.
pgn [in]
The PGN.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

3.4.4.8 vcil_j1939_remove_all_mask
Syntax:

|Wind0ws / Linux || mrm_err vcil_j1939 remove_all_mask(unsigned char port)

| Android |[int vcil_j1939_remove_all_mask(byte port)

Description:

Remove all J1939 mask from the specified CAN port.

Parameters:
port [in]
The CAN port. The first port is 0.

Returns:
MRM_ERR_NO_ERROR - On success.
Otherwise see the error code list.

Remarks:

When you remove all mask, all messages can be received.

3.4.4.9 vcil_j1939_set_config
Syntax:

|Wind0ws / Linux || mrm_err vcil_j1939 set_config(unsigned char port, vcil j1939 config_t *config)

| Android |[int vcil_j1939_set_config(byte port, VCIL_J1939_CONFIG config)

Description:
Set the J1939 configuration.

Parameters:
port [in]
The CAN port. The first port is 0.
config [out]
Windows/Linux:
Pointer to vcil j1939 config t struct that will hold the J1939 config.
Android:
Instance of VCIL _J1939 CONFIG which is used to store J1939 config

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:

After calling this message, the device will send a address claiming message to the bus.

3.4.4.10 vcil_j1939_get_config
Syntax:

|Wind0ws / Linux || mrm_err vcil_j1939 get_config(unsigned char port, vcil_j1939 config_t *config)

| Android |[int vcil_j1939_get_config(byte port, VCIL_J1939_CONFIG config)

Description:
Get the J1939 configuration.

Parameters:
port [in]
The CAN port. The first port is 0.
config [out]
Windows/Linux:
Pointer to vcil j1939 config t struct that will hold the J1939 config.
Android:
Instance of VCIL _J1939 CONFIG which is used to store J1939 config

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

3.4.4.11 vcil_j1939_set_event
Syntax:

|Wind0ws / Linux || mrm_err vcil_j1939 set_event(void *j1939 rx_event)

| Android |-

Description:

Set a user define event in order to let VCIL library notify the specified event when J1939 message is
received.

Parameters:
j1939 rx_event [in]
Pointer to the J1939 received event. In windows, the j1939 rx_event will pointer to a Windows
Events HANDLE. In linux, the j1939 rx_event will pointer to a struct which consists of a
pthread_mutex_t and pthread_cond _t.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:

You should not close the event before deinitialize VCIL library.

3.4.4.12 vcil_j1939_set_event_handler
Syntax:

| Android]| intvcil_j1939 set_event_handler(Handler handler)

Description:

Set handler which handles J1939 message received event.

Parameters:
handler [in]

An instance of Handler.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remark:
e Please refer to the usage guide and sample code for details.

e On alarm event triggered, the Handler will receive message with the "what" field equals to
VCIL_EVENT ID_RECEIVED _MSG_J1939

3.4.4.13 vcil_j1939_unset_event_handler
Syntax:

|Android]| intvcil_j1939 unset_event_handler()

Description:

Unregister handler of 31939 message received event.

Parameters:

none

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remark:

e Please refer to the usage guide and sample code for details.

3.4.4.14 vcil_j1939_wait_event
Syntax:

| Android || intvcil_j1939 wait_event(boolean status)

Description:
Allow/Disallow VCIL to pass J1939 message received event to registered handler when a message is

pushed into SDK internal buffer.

Parameters:
status [in]
The status of whether VCIL should pass J1939 message received event to registered handler
TRUE: Inform
FLASE: Not to inform

Returns:
IMC_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remark:

e Please refer to the usage guide and sample for details.

MRM VCIL User Manual

3.5 OBD2 Functions

3.5.1 Usage

3.5.1.1 Basic Usage

Windows/Linux

Please refer to the VCIL Conventions for basic usage for Windows/Linux.

Also, before using OBD?2 related APIs, you must first set the protocol mode of proper CAN port to OBD2

mode. Please refer to the protocol mode setting section.

Android

Please refer to the VCIL Conventions for basic usage for Android.

Also, before using OBD?2 related APIs, you must first set the protocol mode of proper CAN port to OBD2

mode. Please refer to the protocol mode setting section.

97 /153

3.5.1.2 OBD2 Message Reading

The APIs for reading OBD2 messages is similar to CAN APIs usage. Please refer to CAN message reading

section, and use corresponding APIs for OBD2 instead.

Also, the CAN bus speed must be set correctly before you do read/write operation. Please refer to CAN

Bus Speed Setting section for the details.

3.5.1.3 OBD2 Message Writing

The APIs for writing OBD2 messages is similar to CAN APIs usage. Please refer to CAN message writing

section, and use corresponding APIs for OBD2 instead.

Also, the CAN bus speed must be set correctly before you do read/write operation. Please refer to CAN

Bus Speed Setting section for the details.

3.5.1.4 OBD2 Acceptance filter Settings

Similar with CAN Acceptance Filter, the VCIL MCU provide acceptance filter for OBD2 protocol, which can
filter the PID of OBD2 message. The VCIL MCU supports at most 256 PID filters. A OBD2 message with
PID which is matched with any of the filters will be accepted by MCU.

The APIs for OBD2 filter setting is similar to CAN APIs usage. Please refer to CAN Acceptance filter

Settings section for Windows/Linux and Android APIs usage, and use corresponding APIs for OBD2

instead.

The following is an example of filter setting. If we set filter with PID 0x80, 0x56, 0x11 When the received

OBD2 message's PID value is 0x56, the messages is accepted.

OBD2 Filter Configuration Receive OBD2 data's PID value Result
Filter PID=0x80 0x80 Accept
Filter PID=0x80 0x79 Drop

OBD?2 Filter Configuration Receive OBD2 data's PID value Result
Filter PID=0x80 OR 0x56 OR 0x11 |0x80 Accept
Filter PID=0x80 OR 0x56 OR 0x11 |0x56 Accept
Filter PID=0x80 OR 0x56 OR 0x11 [0x57 Drop
Filter PID=0x80 OR 0x56 OR 0x11 [0x12 Drop

Remark:
The second byte VCIL OBD2 MESSAGE.data is PID.

MRM VCIL User Manual

99/153

MRM VCIL User Manual

3.5.2 Constant

3.5.2.1 Android

Class:
mrm.define. MRM_CONSTANTS

Fields:

[FieldName I Tyee | vaue |
[VCIL_MAX_OBD2_DATA_SIZE |[int |64 |
[VCIL_MAX_OBD2_MASK_NUM _|fint ||128 |
|VCIL_OBD2_TYPE_PHYSICAL |[int ||218 (0xDA) |

VCIL_OBD2_TYPE_FUNCTIONA
L

nt 219 (OxDB)

100/153

3.5.3 Structure/Classes
3.5.3.1 Windows/Linux
vcil_obd2_message_t Structure

Syntax:

typedef struct
{

unsigned char port;

unsigned char type;

unsigned char destination;

unsigned char source;

unsigned char priority;

int length;

unsigned char data[VCIL_MAX_OBD2_DATA_SIZE];
} vcil_obd2_message t;

Description:

This data structure defines the OBD2 message.

Members:

port

This message come from/send to which port.
type

The type format of CAN identifier, Functional(OxDB) or Physical(OxDA).
destination

The destination address of this message. The range is 0x00 to OxFF.
source

The source address of this message. The range is 0x00 to OxFF.
priority

The priority of this message. The priority of range is 0 to 7. Normally set to 6.
length

The standard OBD2 message data length.
data

The data array of OBD2 message.

Remark:
The maximum length of data is VCIL_MAX_OBD2_DATA_SIZE(64). Currently only supported up to
64 bytes OBD2 message. The maximum message length is specified in ISO 15765-2. For request
messages, the message length is limited to seven (7) data bytes. The other type of message can

transmit large logical messages (up to 4095 bytes) using a series of individual CAN frames.

3.5.3.2 Android

VCIL_OBD2_MESSAGE

class:

mrm.define.VCIL.VCIL_OBD2_MESSAGE

Fields:
| Field Name || Type || Input/Output || Comment

This message come from/send to which
port byte in, out port.

The type format of CAN identifier,
type byte in, out Functional(0xDB) or Physical(OxDA).

The destination address of this message.
destination byte in, out The range is 0x00 to OxFF.

The source address of this message. The
source byte in, out range is 0x00 to OxFF.

The priority of this message. The priority of
priority byte in range is O to 7. Normally set to 6.

The standard OBD2 message data length.
length int in, out
data byte([] in, out The array of data of the OBD2 message.
Remark:

The maximum length of data is VCIL MAX OBD2 DATA SIZE(64). Currently only supported up to
64 bytes OBD2 message. The maximum message length is specified in ISO 15765-2. For request

messages, the message length is limited to seven (7) data bytes. The other type of message can

transmit large logical messages (up to 4095 bytes) using a series of individual CAN frames.

3.5.4 APIs
3.5.4.1 vcil_obd2_read

Syntax:

|Windows / Linux || mrm_err vcil_obd2_read(vcil_obd2_message_t *message)

| Android |[int vcil_obd2_read(VCIL_OBD2_MESSAGE message)

Description:
Get a OBD2 message from VCIL library OBD2 buffer if available otherwise you may get a error
code(MRM_ERR_VCIL_DATA_NOT_READY) and a invalid OBD2 message.

Parameters:
message [out]
Windows/Linux:
Pointer to vcil_obd2_ message_t struct which is used to store received OBD2 message
Android:
Instance of VCIL_OBD2 MESSAGE which is used to store received OBD2 message

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:

You can call this function to receive OBD2 message from each CAN port.

3.5.4.2 vcil_obd2_read_multi
Syntax:

[Windows /Linux |[-

int vcil_obd2_read_multi(List<VCIL_OBD2_MESSAGE> messages, int

Android desiredReadNum, int[] resultReadNum)

Description:

Read multiple received OBD2 messages from the SDK internal buffer.

Parameters:
message [out]
Android:
List of VCIL_OBD2 MESSAGE which is used to store received OBD2 messages.

desiredReadNum [in]

The number of OBD2 message you expect to get.

resultReadNum [out]
An allocated array of size 1 for storing the number of OBD2 message the SDK actually returned.

The return value will be stored at index 0.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

3.5.4.3 vcil_obd2_write
Syntax:

| Windows / Linux || mrm_err vcil_obd2_write(vcil_obd2_message t *message)

| Android ||int vcil_obd2_write(VCIL_OBD2_MESSAGE message)

Description:

Write a OBD2 message to specified CAN port.

Parameters:
message [in]
Windows/Linux:
Pointer to vcil_obd2 message _t struct that store the OBD2 message to be sent.
Android:
Instance of VCIL_OBD2 MESSAGE which stores the OBD2 message to be sent.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

3.5.4.4 vcil_obd2_add_mask

Syntax:

|Wind0ws / Linux || mrm_err vcil_obd2_add_mask(unsigned char port, unsigned int pid)

|Android || int vcil_obd2_add_mask(byte port, int pid)

Description:
Add a PID mask to specified CAN port. The mask will allow message with specified PID able to pass
through the filter and be received by user APP.

Parameters:
port [in]
The CAN port. The first port is 0.
pid [in]
The PID mask.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:
After VCIL initialized, by default, all message can pass through the VCIL hardware filter.
After you calling this function once, all message will be blocked except the message with specified PID.
To make only messages with specified PID pass through the filters, you can call this function to add
more acceptable PID.

3.5.4.5 vcil_obd2_get_mask_number

Syntax:
|Wind0ws / Linux || mrm_err vcil_obd2_get_mask_number(unsigned char port, unsigned int* total) |
|Android || int vcil_obd2_get_mask_number(byte port, int[] total) |
Description:

Get the number of OBD2 mask of specified CAN port.

Parameters:
port [in]
The CAN port. The first port is 0.
total [out]

The total number of mask PID.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

3.5.4.6 vcil_obd2_get_all_mask
Syntax:

|Wind0ws / Linux || mrm_err vcil_obd2_get_all_mask(unsigned char port, unsigned int* pid)

|Android || int vcil_obd2_get_all_mask(byte port, int[] pid)

Description:
Get the all OBD2 masks from specified CAN port

Parameters:

port [in]
The CAN port. The first port is 0.

pid [out]

Pointer a PID array, the array size you can get from vcil obd2 get mask number().

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:

You must pass sufficient memory place for this function else your will get segmentation fault

3.5.4.7 vcil_obd2_remove_mask

Syntax:

|Wind0ws / Linux || mrm_err vcil_obd2_remove_mask(unsigned char port, unsigned int pid)

|Android || int vcil_obd2_remove_mask(byte port, int pid)

Description:

Remove specified PID mask from the specified CAN port.

Parameters:
port [in]
The CAN port. The first port is 0.
pid [in]
The PID.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

3.5.4.8 vcil_obd2_remove_all_mask

Syntax:

|Wind0ws / Linux || mrm_err vcil_obd2_remove_all_mask(unsigned char port)

| Android |[int vcil_obd2_remove_all_mask(byte port)

Description:

Remove all OBD2 mask from the specified CAN port.

Parameters:
port [in]
The CAN port. The first port is 0.

Returns:
MRM_ERR_NO_ERROR - On success.
Otherwise see the error code list.

Remarks:

When you remove all mask, all messages can be received.

3.5.4.9 vcil_obd2_set_event
Syntax:

|Wind0ws / Linux || mrm_err vcil_obd2_set_event(void *obd2_rx_event)

| Android |-

Description:
Set a user define event in order to let VCIL library notify the specified event when OBD2 message is

received.

Parameters:
obd2_rx_event [in]
Pointer to the OBD2 received event. In windows, the obd2_rx_event will pointer to a Windows
Events HANDLE. In linux, the obd2_rx_event will pointer to a struct which consists of a

pthread_mutex_t and pthread_cond _t.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:

You should not close the event before deinitialize VCIL library.

3.5.4.10 vcil_obd2_set_event_handler
Syntax:

|Android]| intvcil_obd2_set _event_handler(Handler handler)

Description:

Set handler which handles OBD2 message received event.

Parameters:
handler [in]

An instance of Handler.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remark:
e Please refer to the usage guide and sample code for details.

e On alarm event triggered, the Handler will receive message with the "what" field equals to
VCIL_EVENT ID_RECEIVED _MSG_OBD2

3.5.4.11 vcil_obd2_unset_event_handler

Syntax:

|Android]| intvcil_obd2 unset_event_handler()

Description:

Unregister handler of OBD2 message received event.

Parameters:

none

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remark:

e Please refer to the usage guide and sample code for details.

3.5.4.12 vcil_obd2_wait_event
Syntax:

| Android || int vcil_obd2_wait_event(boolean status)

Description:
Allow/Disallow VCIL to pass OBD2 message received event to registered handler when a message is

pushed into SDK internal buffer.

Parameters:
status [in]
The status of whether VCIL should pass OBD2 message received event to registered handler
TRUE: Inform
FLASE: Not to inform

Returns:
IMC_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remark:

e Please refer to the usage guide and sample for details.

MRM VCIL User Manual

3.6 J1708 Functions

3.6.1 Usage
3.6.1.1 Basic Usage

Windows/Linux

Please refer to the VCIL Conventions for basic usage for Windows/Linux.

Also, before using J1708 related APIs, you must first set the protocol mode of proper J1708 port to J1708

mode. Please refer to the protocol mode setting section.

Android

Please refer to the VCIL Conventions for basic usage for Android.

Also, before using J1708 related APIs, you must first set the protocol mode of proper J1708 port to J1708

mode. Please refer to the protocol mode setting section.

115/ 153

3.6.1.2 J1708 Message Reading

The APIs for reading J1708 messages is similar to CAN APIs usage. Please refer to CAN message reading

section, and use corresponding APlIs for J1708 instead.

3.6.1.3 J1708 Message Writing

The APIs for writing J1708 messages is similar to CAN APIs usage. Please refer to CAN message writing

section, and use corresponding APlIs for J1708 instead.

3.6.1.4 11708 Acceptance filter Settings

Similar with CAN Acceptance Filter, the VCIL MCU provide acceptance filter for 31708 protocol, which can
filter the MID of J1708 message. The VCIL MCU supports at most 256 MID filters. A J1708 message with

MID which is matched with any of the filters will be accepted by MCU.

The APIs for J1708 filter setting is similar to CAN APIs usage. Please refer to CAN Acceptance filter
Settings section for Windows/Linux and Android APIs usage, and use corresponding APIs for J1708

instead.

The following is an example of filter setting. If we set filter with MID 0x80, 0x56, 0x11 When the received

J1708 message's MID value is 0x56, the messages is accepted.

J1708 Filter Configuration Receive J1708 data's MID value Result
Filter MID=0x80 0x80 Accept
Filter MID=0x80 0x79 Drop

J1708 Filter Configuration Receive J1708 data's MID value Result
Filter MID=0x80 OR 0x56 OR 0x11 [0x80 Accept
Filter MID=0x80 OR 0x56 OR 0x11 [0x56 Accept
Filter MID=0x80 OR 0x56 OR 0x11 [0x57 Drop
Filter MID=0x80 OR 0x56 OR 0x11 [0x12 Drop

MRM VCIL User Manual

3.6.2 Constant

3.6.2.1 Android

Class:
mrm.define. MRM_CONSTANTS

Fields:
[VCIL_MAX_J1708_DATA_SIZE |[int |20 |
[VCIL_MAX_J1708_MASK_NUM |[int ||256 |

117 /153

3.6.3 Structure/Classes
3.6.3.1 Windows/Linux
vcil_j1708_message_t Structure

Syntax:

typedef struct
{

unsigned char mid,;

unsigned char priority;

int length;

unsigned char data[VCIL_MAX_J1708 DATA_SIZE];
} vcil_j1708 message_t;

Description:
This data structure defines the J1708 message.

Members:
mid
The message identification character. The range is 0x00 to OXFF.
priority
The priority of this message. The priority of range is 1 to 8. Normally set to 6.
length
The standard J1708 message data length. The range is 0x00 to OxFF.
data
The data array of J1708 message.

Remark:
The maximum length of data is VCIL_MAX_J1708 DATA_SIZE(20). The maximum message length is
21 (include MID+data) specified in SAE J1708.

3.6.3.2 Android

VCIL_J1708_MESSAGE

class:

mrm.define.VCIL.VCIL_J1708 MESSAGE

Fields:
| Field Name | Type ||Input/Output || Comment

The message identification character.
mid byte in, out The range is 0x00 to OxFF.

The priority of this message. The priority of
priority byte in range is 1 to 8. Normally set to 6.

The standard J1708 message data length.
length int in, out
data byte([] in, out The array of data of the J1708 message.
Remark:

The maximum length of data is VCIL MAX J1708 DATA SIZE(20). The maximum message length is
21 (include MID+data) specified in SAE J1708.

3.6.4 APIs
3.6.4.1 vcil_j1708_read

Syntax:

|Windows / Linux || mrm_err vcil_j1708_read (vcil_j1708_message_t *message)

| Android |[int vcil_j1708_read(VCIL_J1708_MESSAGE message)

Description:
Get a J1708 message from VCIL library J1708 buffer if available otherwise you may get a error
code(MRM_ERR_VCIL_DATA_NOT_READY) and a invalid J1708 message.

Parameters:
message [out]
Windows/Linux:
Pointer to vcil_j1708 message_t struct which is used to store received J1708 message
Android:
Instance of VCIL J1708 MESSAGE which is used to store received J1708 message

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

3.6.4.2 vcil_j1708_read_multi
Syntax:

[Windows /Linux |[-

int vcil_j1708 read_multi(List<VCIL_J1708_MESSAGE> messages, int

AIeld desiredReadNum, int[] resultReadNum)

Description:

Read multiple received J1708 messages from the SDK internal buffer.

Parameters:
message [out]
Android:
List of VCIL J1708 MESSAGE which is used to store received J1708 messages.

desiredReadNum [in]

The number of J1708 message you expect to get.

resultReadNum [out]
An allocated array of size 1 for storing the number of J1708 message the SDK actually returned.

The return value will be stored at index 0.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

3.6.4.3 vcil_j1708_write
Syntax:

| Windows / Linux || mrm_err vcil_j1708_ write(vcil_j1708_message_t *message)

| Android ||int vcil_j1708_write(VCIL_J1708_MESSAGE message)

Description:

Write a J1708 message to specified CAN port.

Parameters:
message [in]
Windows/Linux:
Pointer to vcil j1708 message t struct that store the J1708 message to be sent.
Android:
Instance of VCIL J1708 MESSAGE which stores the J1708 message to be sent.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

3.6.4.4 vcil_j1708_add_mask
Syntax:

|Wind0ws / Linux || mrm_err vcil_j1708 add_mask(unsigned char mid)

| Android |lint vcil_j1708_add_mask(byte mid)

Description:
Add a MID mask to specified CAN port. The mask will allow message with specified MID able to pass
through the filter and be received by user APP.

Parameters:
mid [in]

The MID mask.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:
After VCIL initialized, by default, all message can pass through the VCIL hardware filter.
After you calling this function once, all message will be blocked except the message with specified MID.
To make only messages with specified MID pass through the filters, you can call this function to add
more acceptable MID.

3.6.4.5 vcil_j1708_get_mask_number
Syntax:

|Wind0ws / Linux || mrm_err vcil_j1708_get_mask_number(unsigned int* total)

| Android || int vcil_j1708_get_mask_number(int[] total)

Description:
Get the number of J1708 mask.

Parameters:
total [out]

The total number of mask MID.

Returns:
MRM_ERR_NO_ERROR - On success.
Otherwise see the error code list.

3.6.4.6 vcil_j1708_get_all_mask
Syntax:

|Wind0ws / Linux || mrm_err vcil_j1708 get_all_mask(unsigned char* mid)

| Android || intvcil_j1708 get_all_mask(byte[] mid)

Description:
Get the all J1708 mask.

Parameters:
mid [out]

Pointer a MID array, the array size you can get from vcil_j1708 get mask number().

Returns:
MRM_ERR_NO_ERROR - On success.
Otherwise see the error code list.

Remarks:

You must pass sufficient memory place for this function else your will get segmentation fault

3.6.4.7 vcil_j1708_remove_mask
Syntax:

|Wind0ws / Linux || mrm_err vcil_j1708 remove_mask(unsigned char mid)

|Android || intvcil_j1708 remove_mask(byte mid)

Description:

Remove specified MID mask.

Parameters:
mid [in]
The MID.

Returns:
MRM_ERR_NO_ERROR - On success.
Otherwise see the error code list.

3.6.4.8 vcil_j1708_remove_all_mask
Syntax:

| Windows / Linux || mrm_err vcil_j1708 remove_all_mask(void)

|Android || intvcil_j1708_remove_all_mask()

Description:

Remove all J1708 mask.

Parameters:

None.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:

When you remove all mask, all messages can be received.

3.6.4.9 vcil_j1708_set_event
Syntax:

|Wind0ws / Linux || mrm_err vcil_j1708_set_event(void *j1708_rx_event)

| Android |-

Description:

Set a user define event in order to let VCIL library notify the specified event when J1708 message is
received.

Parameters:
j1708_rx_event [in]
Pointer to the J1708 received event. In windows, the j1708_rx_event will pointer to a Windows
Events HANDLE. In linux, the j1708_rx_event will pointer to a struct which consists of a
pthread_mutex_t and pthread_cond _t.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:

You should not close the event before deinitialize VCIL library.

3.6.4.10 vcil_j1708_set_event_handler
Syntax:

| Android]| intvcil_j1708 set_event_handler(Handler handler)

Description:

Set handler which handles J1708 message received event.

Parameters:
handler [in]

An instance of Handler.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remark:
e Please refer to the usage guide and sample code for details.

e On alarm event triggered, the Handler will receive message with the "what" field equals to
VCIL_EVENT ID_RECEIVED _MSG J1708

3.6.4.11 vcil_j1708_unset_event_handler
Syntax:

|Android]| intvcil_j1708 unset_event_handler()

Description:

Unregister handler of J1708 message received event.

Parameters:

none

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remark:

e Please refer to the usage guide and sample code for details.

3.6.4.12 vcil_j1708_wait_event
Syntax:

| Android || intvcil_j1708 wait_event(boolean status)

Description:
Allow/Disallow VCIL to pass J1708 message received event to registered handler when a message is

pushed into SDK internal buffer.

Parameters:
status [in]
The status of whether VCIL should pass J1708 message received event to registered handler
TRUE: Inform
FLASE: Not to inform

Returns:
IMC_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remark:

e Please refer to the usage guide and sample for details.

MRM VCIL User Manual

3.7 J1587 Functions

3.7.1 Usage

3.7.1.1 Basic Usage

Windows/Linux

Please refer to the VCIL Conventions for basic usage for Windows/Linux.

Also, before using J1587 related APIs, you must first set the protocol mode of proper J1708 port to J1587

mode. Please refer to the protocol mode setting section.

Android

Please refer to the VCIL Conventions for basic usage for Android.

Also, before using J1587 related APIs, you must first set the protocol mode of proper J1708 port to J1587

mode. Please refer to the protocol mode setting section.

132 /153

3.7.1.2 J1587 Message Reading

The APIs for reading J1587 messages is similar to CAN APIs usage. Please refer to CAN message reading

section, and use corresponding APlIs for J1587 instead.

3.7.1.3 J1587 Message Writing

The APIs for writing J1587 messages is similar to CAN APIs usage. Please refer to CAN message writing

section, and use corresponding APlIs for J1587 instead.

3.7.1.4 11587 Acceptance filter Settings

Similar with CAN Acceptance Filter. the VCIL MCU provide acceptance filter for 31587 protocol, which can
filter the PID of J1587 message. The VCIL MCU supports at most 512 PID filters. A J1587 message with

PID which is matched with any of the filters will be accepted by MCU.

The APIs for J1587 filter setting is similar to CAN APIs usage. Please refer to CAN Acceptance filter

Settings section for Windows/Linux and Android APIs usage, and use corresponding APIs for J1587

instead.

The following is an example of filter setting. If we set filter with PID 0x80, 0x56, 0x11 When the received

J1587 message's PID value is 0x56, the messages is accepted.

J1587 Filter Configuration Receive J1587 data's PID value Result
Filter PID=0x80 0x80 Accept
Filter PID=0x80 0x79 Drop

J1587 Filter Configuration Receive J1587 data's PID value Result
Filter PID=0x80 OR 0x56 OR 0x11 [0x80 Accept
Filter PID=0x80 OR 0x56 OR 0x11 [0x56 Accept
Filter PID=0x80 OR 0x56 OR 0x11 [0x57 Drop
Filter PID=0x80 OR 0x56 OR 0x11 [0x12 Drop

MRM VCIL User Manual

3.7.2 Constant

3.7.2.1 Android

Class:
mrm.define. MRM_CONSTANTS

Fields:
[VCIL_MAX_J1587_DATA_SIZE |[int |20 |
[VCIL_MAX_J1587_MASK_NUM |[int ||256 |

134 /153

3.7.3 Structure/Classes
3.7.3.1 Windows/Linux
vcil_j1587_message_t Structure

Syntax:

typedef struct
{

unsigned char mid,;

unsigned char priority;

unsigned int pid;

int length;

unsigned char data[VCIL_MAX_J1587 DATA_SIZE];
} vcil_j587_message_t;

Description:

This data structure defines the J1587 message.

Members:
mid
The message identification character. The range is 0x00 to OxFF.
priority
The priority of this message. The priority of range is 1 to 8. Normally set to 6.
pid
The parameter Identification. The range is 0x00 to OX1FE, exclude OxFF. The detail range please
refer to SAE-J1708
length
The standard J1587 message data length. exclude pid length.
data

The data array of J1587 message.

Remark:
The maximum length of data is VCIL_MAX_J1587_DATA_SIZE(20). The maximum message length is
21 (include MID+data) specified in SAE J1708.

3.7.3.2 Android

VCIL_J1587_MESSAGE

class:
mrm.define.VCIL.VCIL_J1587 MESSAGE

Fields:
| Field Name || Type || Input/Output || Comment

The message identification character. The
mid byte in, out range is 0x00 to OxFF.

The priority of this message. The priority of
priority byte in range is 1 to 8. Normally set to 6.

The parameter Identification. The range is

0x00 to OX1FE, exclude OxFF. The detalil
pid int In, out range please refer to SAE-J1708

The standard J1587 message data length.
length int in, out exclude pid length.

The array of data of the J1587 message.
data byte[] in, out
Remark:

The maximum length of data is VCIL MAX J1587 DATA SIZE(20). The maximum message length is
21 (include MID+data) specified in SAE J1708.

3.7.4 APIs
3.7.4.1 vcil _j1587_read

Syntax:

|Windows / Linux || mrm_err vcil_j1587_read (vcil_j1587_message_t *message)

| Android |[int vcil_j1587_read(VCIL_J1587_MESSAGE message)

Description:
Get a J1587 message from VCIL library J1587 buffer if available otherwise you may get a error
code(MRM_ERR_VCIL_DATA_NOT_READY) and a invalid J1587 message.

Parameters:
message [out]
Windows/Linux:
Pointer to vcil_j1587 message_t struct which is used to store received J1587 message
Android:
Instance of VCIL J1587 MESSAGE which is used to store received J1587 message

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:

You can call this function to receive J1587 message from each CAN port.

3.7.4.2 vcil_j1587_read_multi
Syntax:

[Windows /Linux |[-

int vcil_j1587 read_multi(List<VCIL_J1587_ _MESSAGE> messages, int

Android desiredReadNum, int[] resultReadNum)

Description:

Read multiple received J1587 messages from the SDK internal buffer.

Parameters:
message [out]
Android:
List of VCIL J1587 MESSAGE which is used to store received J1587 messages.

desiredReadNum [in]

The number of J1587 message you expect to get.

resultReadNum [out]
An allocated array of size 1 for storing the number of J1587 message the SDK actually returned.

The return value will be stored at index 0.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

3.7.4.3 vcil_j1587_write
Syntax:

| Windows / Linux || mrm_err vcil_j1587 write(vcil_j1587_message_t *message)

| Android ||int vcil_j1587_write(VCIL_J1587_MESSAGE message)

Description:

Write a J1587 message to specified J1587 port.

Parameters:
message [in]
Windows/Linux:
Pointer to vcil j1587 message t struct that store the J1587 message to be sent.
Android:
Instance of VCIL J1587 MESSAGE which stores the J1587 message to be sent.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

3.7.4.4 vcil_j1587_add_mask
Syntax:

|Wind0ws / Linux || mrm_err vcil_j1587 add_mask(unsigned int pid)

| Android |lint vcil_j1587_add_mask(int pid)

Description:
Add a PID mask to specified CAN port. The mask will allow message with specified PID able to pass
through the filter and be received by user APP.

Parameters:
pid [in]
The PID mask.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:
After VCIL initialized, by default, all message can pass through the VCIL hardware filter.
After you calling this function once, all message will be blocked except the message with specified PID.
To make only messages with specified PID pass through the filters, you can call this function to add
more acceptable PID.

3.7.4.5 vcil_j1587_get_mask_number
Syntax:

|Wind0ws / Linux || mrm_err vcil_j1587_get_mask_number(unsigned int* total)

| Android || int vcil_j1587_get_mask_number(int[] total)

Description:
Get the number of J1587 mask.

Parameters:
total [out]

The total number of mask PID.

Returns:
MRM_ERR_NO_ERROR - On success.
Otherwise see the error code list.

3.7.4.6 vcil_j1587_get_all_mask
Syntax:

|Wind0ws / Linux || mrm_err vcil_j1587 _get_all_mask(unsigned int* pid)

| Android |[int vcil_j1587_get_all_mask(int[] pid)

Description:
Get the all J1587 mask.

Parameters:
pid [out]
Pointer a PID array, the array size you can get from vcil j1587 get mask number().

Returns:
MRM_ERR_NO_ERROR - On success.
Otherwise see the error code list.

Remarks:

You must pass sufficient memory place for this function else your will get segmentation fault

3.7.4.7 vcil_j1587_remove_mask
Syntax:

|Wind0ws / Linux || mrm_err vcil_j1587 remove_mask(unsigned int pid)

|Android || int vcil_j1587 remove_mask(int pid)

Description:

Remove specified PID mask.

Parameters:
pid [in]
The PID.

Returns:
MRM_ERR_NO_ERROR - On success.
Otherwise see the error code list.

3.7.4.8 vcil_j1587_remove_all_mask
Syntax:

| Windows / Linux || mrm_err vcil_j1587 remove_all_mask(void)

|Android || intvcil_j1587_remove_all_mask()

Description:

Remove all J1587 mask.

Parameters:

None.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:

When you remove all mask, all messages can be received.

3.7.4.9 vcil_j1587_set_event
Syntax:

|Wind0ws / Linux || mrm_err vcil_j1587_set_event(void *j1587_rx_event)

| Android |-

Description:

Set a user define event in order to let VCIL library notify the specified event when J1587 message is
received.

Parameters:
j1587_rx_event [in]
Pointer to the J1587 received event. In windows, the j1587_rx_event will pointer to a Windows
Events HANDLE. In linux, the j1587_rx_event will pointer to a struct which consists of a
pthread_mutex_t and pthread_cond _t.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:

You should not close the event before deinitialize VCIL library.

3.7.4.10 vcil_j1587_set_event_handler
Syntax:

| Android]| intvcil_j1587 set_event_handler(Handler handler)

Description:

Set handler which handles J1587 message received event.

Parameters:
handler [in]

An instance of Handler.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remark:
e Please refer to the usage guide and sample code for details.

e On alarm event triggered, the Handler will receive message with the "what" field equals to
VCIL_EVENT ID_RECEIVED _MSG_J1587

3.7.4.11 vcil_j1587_unset_event_handler
Syntax:

|Android]| intvcil_j1587 unset_event_handler()

Description:

Unregister handler of J1587 message received event.

Parameters:

none

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remark:

e Please refer to the usage guide and sample code for details.

3.7.4.12 vcil_j1587_wait_event
Syntax:

| Android || int vcil_j1587 wait_event(boolean status)

Description:
Allow/Disallow VCIL to pass J1587 message received event to registered handler when a message is

pushed into SDK internal buffer.

Parameters:
status [in]
The status of whether VCIL should pass J1587 message received event to registered handler
TRUE: Inform
FLASE: Not to inform

Returns:
IMC_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remark:

e Please refer to the usage guide and sample for details.

MRM VCIL User Manual

3.8 Cradle Functions

3.8.1 APIs
3.8.1.1 vcil_cradle_set_detach_event

Syntax:

mrm_err vcil_cradle_set_detach_event(void *cradle_event)

Description:

Set a user define event in order to let VCIL library notify the specified event when detect cradle detach.

Parameters:
cradle_event [in]
Pointer to the cradle detach event. In windows, the cradle_detach_event will pointer to a Windows
Events HANDLE.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:

e This function only support for TREK-973.

149/ 153

3.8.1.2 vcil_cradle_set_attach_event

Syntax:

mrm_err vcil_cradle_set_attach_event(void *cradle_event)

Description:

Set a user define event in order to let VCIL library notify the specified event when detect cradle detach.

Parameters:
cradle_event [in]
Pointer to the cradle attach event. In windows, the cradle_attach_event will pointer to a Windows
Events HANDLE.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:

e This function only support for TREK-973.

3.8.1.3 vcil_cradle_get_status

Syntax:

mrm_err vcil_cradle_get_status(char *status)

Description:

Get current status of cradle.

Parameters:
status [out]

cradle detach or attach status. The value 1 is Attach otherwise 0 is detach.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:

e This function only support for TREK-973.

4 Error Code List

4.1 Comman Error

(0x00000000) MRM_ERR_NO_ERROR - On success.
(0x00000001) MRM_ERR_INVALID_POINTER - Encounter invalid pointer.
(0x00000002) MRM_ERR_INVALID_ARGUMENT - Encounter invalid argument. Please check out the

API parameter.

(0Ox00000003) MRM_ERR_UNSUPPORT_OPERATION - Encounter unsupport opeartion. Please

check out spec. of the platform supported.

(Ox00000005) MRM_ERR_LIBRARY_NOT_INIT - Function call before the library init.
(0Ox00000010) MRM_ERR_ILLEGAL_OPERATION - Encounter illegal operation.

(0x00000011) MRM_ERR_LIBRARY_ALREADY_INIT - Function call before the library init.
(0x00000012) MRM_ERR_ARRAY_OUR_OF_RANGE - Encounter the access array out of range.
(0x00000013) MRM_ERR_OPERATION_FAIL - Encounter the operation fail.

(0x00000014) MRM_ERR_DEVICE_NOT_EXIST - Encounter the cradle not attached.

(0x10000001) MRM_ERR_ANDROID_JNI_NULL_POINTER - Null pointer error occurred on VCIL lib
side(JNI).

(0x10000002) MRM_ERR_ANDROID_JNI_OUT_OF_MEMORY - Out of memory error occurred on
VCIL lib side(INI).

(0x10000003) MRM_ERR_ANDROID_JNI_EVENT_INIT_FAILED - Failed to init event handle on VCIL
lib side(JINI).

(0x10000004) MRM_ERR_ANDROID_JNI_EVENT_DEINIT_FAILED - Failed to init event handle on
VCIL lib side(INI).

(0x10000005) MRM_ERR_ANDROID_JNI_EVENT_LISTENING_THREAD_ALREADY_RUNNING -

Event listening thread is already running(JNI).

(0x10000006) MRM_ERR_ANDROID_JNI_EVENT_LISTENING_THREAD_CREATE_FAILED -

Failed to create event listening thread(JNI).

4.2 This following figure describes how to write CAN messages to CAN
bus by using SDK APIs.

(0x03000001) MRM_ERR_VCIL_DEVICE_NODE_OPEN_FAIL - Open VCIL device node fail. Please

checkout VCIL is exist or the device not use by another application.

(0x03000002) MRM_ERR_VCIL_DEVICE_NODE_WRITE_FAIL - Encounter write operation fail.

Please retry operation.

(0x03000003) MRM_ERR_VCIL_DEVICE_NODE_READ_FAIL - Encounter read operation fail. Please

retry operation.
(0x03000004) MRM_ERR_VCIL_IS BUSY - Encounter library is busy. Please retry operation.
(0x03000008) MRM_ERR_VCIL_DEVICE_NODE_READ_TIMEOUT - Encounter read operation

timeout. Please retry operation.

(0x03000009) MRM_ERR_VCIL_DATA_NOT_READY - Encounter data buffer empty.

