MRM GPS User Manual

5/4/2017
SSID.SRP

Copyright (c) 2014 by Advantech. All Rights Reserved.

Table of contents

1 g o T [T o) PP 3
1.1 GPS OVEIVIEW ...cviiiiiiiiiieiiesi s sss s e s s s s s s s e s e s s sa s s sn s eransean s e rnnsennnsennsennnsennnses 3
1.2 System ReqUIrEMENTSccuu it e s e e e s e na e 3

2 USING GPS LIDraryccuuiiieii e rs s r s s s n s nn e s s e s s ra e e nn e s e rnn s 3
2.1 GPS Library CONVENTIONSiivtiiiriieierse s s e s s s s s s rse s s s s s s s eran e e nn s ennaas 3
2.2 C++ With Visual StUAIO ...ceuuiiieiiiiceic e e e ra s 3
PG T O o /1 o 1 [oSSR 3

2 U Tt T T O AV =T YT 4
3.1 GPS INformation QUEKYuiiiiiiiiiie e e e e ra s 4

4 Application Programming Interface (API)ccuuiiiiiiiiiiiiiiiciiie e rrr s e e 4
e 1 o U T P 4

4.1.1 gps_fiXx_Status ENUMccevuiiiii e ra s 4
4.1.2 gps_antenna_status ENUMccuiiieiiiiiiiiin s r s e ra e 5
4.1.3 gps_location_t SErUCEUIEcveiii 6
4.1.4 gps_time_t_t STrUCTUIE ... cee e 7
4.1.5 gps_satellite_t SLrUCLUIEcceuiiiiii e 8
L 8 I I oL P 9
4.1.7 gPS_AEINIT....cceeriei i e e e e e e ree 10
4.1.8 gPS_gEL VEISION ...iiieiiiiiiiiecen e rri e e e s s e e e 11
z I e oo X3 o =l o Tor= | o o P 12
4.1.10 gPS_get_SPEEAccivruuiiiiiiirie i eerrie e e rre 13
4.1.11 gps_get_ULC_tIMEiieniiiiiiiiier i e e e 14
4.1.12 gps_get_satellite_iN_VIEWcccuiiiiiiiiiiiii it 15
4.1.13 gps_get_satellites......iiiiiiiiiiiieii e 16
4.1.14 gps_get_fiX_Status......cooeuiiiiii 17
4.1.15 gps_get_antenna_sStatusccoeeiiiiiiiiii e 18
4.1.16 gps_set_nmea_callbackcceuiiiiiiiiiiiiiii s 19
4.1.17 gps_clear_nmea_callback.........ccueviiiuiiiiiiiiieiin e 20

I = o o T [) 21

00 B 0] 4 .4 =T o T =) PP 21

oA €1 2/ SN =l o 21

1 Introduction

1.1 GPS Overview
MRM GPS API is a lightweight interface between OS(Operating system) and GPS module. In order to

flexibly meet customer demand, we provide developer a command-style to query GPS information. The
MRM SDK offer many kinds of API to query GPS information without user deal any NMEA code parse. For
the advanced user, you can using callback function for easy capture NMEA code without deal any serial
port handling. At begin using GPS API, you should call gps_init(). Normally the API should return 32-bits
error code MRM_ERR_NO_ERROR(0). You must confirm the return value to ensure that the command is

work. After calling gps_init(), the library will initialize GPS and start to accept command.
MRM GPS API(gps.dll or gps.so)

The detail please refer to the below section.

1.2 System Requirements

Hardware:
e GPS Module (u-blox)

Operating system:
e Windows
e Linux

2 Using GPS Library

2.1 GPS Library Conventions

e You should call gps_init() before using the other GPS API

® You should always check the return value equal MRM_ERR_NO_ERROR(0), in order to ensure the
command working.

e Any read type API using the pass by pointer. You should ensure the pointer be not released during the
API processing and the pointer is valid.

e Any GPS API has a prefix "gps_" immediately followed by the function name and the operation name

2.2 C++ with Visual Studio

1. Right Click on Project to enter Project Properites
2. Add #include "gps/gps.h" to your program
3. Select Linker and Input page. Set Additional Dependencies "gps.lib"

2.3 C++ with gcc
1. Add the header path in CXXFLAG

2. Add #include "gps/gps.h" to your program

3. Add -lgps in LDFLAGS

MRM GPS User Manual

4. gcc $(CXXFLAG) xxx.cpp -0 XXX.0

5. gcc xxx.0 $(LDFLAGS) -0 output
3 Function Overview

3.1 GPS Information Query
MRM GPS SDK provide information as below table

Item Related API

Latitude gps_get_location

Longitude gps_get _location

Altitude gps_get_location

UTC Time gps_get_utc_time

Fix status gps_get_fix_status

Antenna status gps_get_antenna_status

Speed over ground |gps_get speed

Satellite Information |gps_get_satellite_in_view, gps_get_satellites
NMEA code gps_set_nmea_callback, gps_clear_nmea_callback

4 Application Programming Interface (API)

4.1 GPS Functions

4.1.1 gps_fix_status Enum

e (0) GPS_STATUS_NO_FIX - No fix with GPS.

e (1) GPS_STATUS_GPS - Fix with GPS.

® (2) GPS_STATUS_DGPS - Fix with Differential GPS.

e (3) GPS_STATUS_DR - Estimated dead reckoning (linear extrapolation).

4/21

MRM GPS User Manual

4.1.2 gps_antenna_status Enum

(0) GPS_ANTENNA_UNKNOWN - Unknown GPS antenna status.

(1) GPS_ANTENNA_OK - The GPS antenna is OK.

(2) GPS_ANTENNA_OPEN - The GPS antenna is open.

(3) GPS_ANTENNA_SHORT - The GPS antenna is short. Please check out the signal line is fine.

5/21

4.1.3 gps_location_t Structure
Syntax:

typedef struct

double latitude;
double longitude;
double altitude;

} gps_location_t;

Description:

This data structure defines the current location.

Members:
latitude
The degree of latitude. The negative is south otherwise north.
longitude
The degree of longitude. The negative is west otherwise east.
altitude

The altitude. The unit is meter.

4.1.4 gps_time_t_t Structure

Syntax:
typedef struct
{
unsigned short year;
unsigned char month;
unsigned char day;
unsigned char hour;
unsigned char minute;
unsigned char second;
unsigned short msecond,;
} gps_time_t;
Description:

This data structure defines the current location.

Members:

year

The year. The valid values for this member are 2000 through 2099.
month

The month. 1 for January, 2 for February..and so on.
day

The day. The valid values for this member are 1 through 31.
hour

The hour. The valid values for this member are 0 through 23.
minute

The minute. The valid values for this member are 0 through 59.
second

The second. The valid values for this member are 0 through 59.
meecond

The mini second . The valid values for this member are 0 through 999.

4.1.5 gps_satellite_t Structure
Syntax:

typedef struct
{
int prn;
int elevation;
int azimuth;
int snr;
int used;
} gps_satellite_t;

Description:

This data structure defines the current location.

Members:
prn
The satellite ID.
elevation
The elevation in degrees. The valid values for this member are 0 to 90
azimuth
The azimuth degrees from true North. The valid values for this member are 0 through 359.
snr
The satellite SNR in dB. The valid values for this member are 0 through 99.
used

The usage. The values 1 is used otherwise not.

4.1.6 gps_init
Syntax:

mrm_err gps_init(char *port)

Description:

General initialization of the GPS library.

Parameters:
port [in]
Pointer to a buffer that will hold the string of GPS device path. The buffer is C string that end of "\0'.
The content of unused bytes filled 0x00.
Example:
port = "W\COM4" at Windows
port = "/dev/ttyS3" at Linux

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:
Prior to calling any GPS API function the library needs to be initialized by calling this function. The
return code for all GPS API function will be MRM_ERR_LIBRARY_NOT_INIT unless this function is
called.

4.1.7 gps_deinit
Syntax:

mrm_err gps_deinit(void)

Description:

General uninitialization of the GPS library.

Parameters:

none

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

4.1.8 gps_get_version
Syntax:

mrm_err gps_get_version(char *version)

Description:

Get the library version of GPS.

Parameters:
version [out]
Pointer to a buffer that will hold the version of SDK. The buffer is C string that end of \0'. The
content of unused bytes filled 0x00.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remark:

The maximum length of version string is GPS_MAXIMUM_LIBRARY_STRING_LENGTH(24)

4.1.9 gps_get_location
Syntax:

mrm_err gps_get_location(gps_location_t *location)

Description:
Get the last location information. you should always check the GPS fix status before calling this

function.

Parameters:
location [out]

Pointer to gps_location_t structure that will hold the lalocation information.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:
The library will keep the last valid GPS information until the new valid location information coming. At
begin, library does not hold any validation data, instead return MRM_ERR_GPS_DATA_NOT_READY.

4.1.10 gps_get_speed
Syntax:

mrm_err gps_get_speed(double *mps)

Description:

Get the last speed over ground.

Parameters:
mps [out]

Pointer to a double that will hold the last speed over ground. The unit is meter per second.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

4.1.11 gps_get_utc_time
Syntax:

mrm_err gps_get_utc_time(gps_time_t *utc_time)

Description:
Get the last UTC time from GPS. you should always check the GPS fix status before calling this
function. We recommend you using this time only for time synchronization. The GPS signal does not
guarantee stability. When no signal, the time will hold the last updated time.

Parameters:
utc_time [out]

Pointer to gps_time_t structure that will hold the UTC time information.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:
The library will keep the last valid GPS information until the new valid location information coming. At
begin, library does not hold any validation data, instead return MRM_ERR_GPS_DATA_NOT_READY.

MRM GPS User Manual

4.1.12 gps_get_satellite_in_view
Syntax:

mrm_err gps_get_satellite_in_view(int *count)

Description:

Get the number of satellites in view from GPS signal.

Parameters:
count [out]

Pointer to a int that will hold the number of satellites in view.
Returns:

MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

15/21

4.1.13 gps_get_satellites
Syntax:

mrm_err gps_get_satellites(gps_satellite_t *satellite)

Description:
Get the last satellites information. You need check the satellite member of structure "used" to ensure
the satellite is actual used for GPS.

Parameters:
satellite [out]
Pointer to gps_satellite_t structure array that will hold the satellites information. The data order as
below

satellites 1, satellites 2,.. , and so on.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:
The library will keep the last valid GPS information until the new valid location information coming. You
should provide enough memory space for storing satellites information. We recommend you provide
at least 32 * sizeof(gps_satellite_t).

4.1.14 gps_get_fix_status
Syntax:

mrm_err gps_get_fix_status(gps_fix_status *status)

Description:
Get the GPS fix status.

Parameters:
status [out]

Pointer to a status that will hold the fix GPS status. The detail please refer to gps_fix_status
section.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

4.1.15 gps_get_antenna_status
Syntax:

mrm_err gps_get_antenna_status(gps_antenna_status *status)

Description:

Get the GPS antenna status.

Parameters:
status [out]
Pointer to a status that will hold the GPS antenna status. The detail please refer to

gps_antenna_status section.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

Remarks:
When the status become GPS_ANTENNA_SHORT, the GPS module need a period time(30s+) to
recovery to normal state after the troubleshooting.

4.1.16 gps_set_nmea_callback
Syntax:

typedef void (_stdcall *gps_nmea_callback) (char *NMEA , int length)
mrm_err gps_set_nmea_callback(gps_nmea_callback callback)

Description:
This function is used to register the NMEA callback function. There can be only one function registered
for this callback. The callback is called every time NMEA message coming from the GPS port. The

function has as its arguments the NMEA string. This information can be used in the callback function to
perform the appropriate action.

The callback function is used for asynchronous notification, somewhat like a hardware interrupt. We
recommend that you note the information provided in the callback, but not process a long time work
itself in the callback function. That should be done in the appropriate routine or thread dedicated to

processing. If your callback function take too long time, its maybe cause other GPS API response time
extend.

Parameters:
callback [in]

Pointer to a user defined callback function.

Returns:
MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

MRM GPS User Manual

4.1.17 gps_clear_nmea_callback

Syntax:

mrm_err gps_clear_nmea_callback(void)

Description:

Clear the callback registration of the GPS library.

Parameters:

none
Returns:

MRM_ERR_NO_ERROR - On success.

Otherwise see the error code list.

20/21

5 Error Code List

5.1 Comman Error

(0x00000000) MRM_ERR_NO_ERROR - On success.

(0x00000001) MRM_ERR_INVALID_POINTER - Encounter invalid pointer.

(0x00000005) MRM_ERR_LIBRARY_NOT_INIT - Function call before the library init.
(0Ox00000010) MRM_ERR_ILLEGAL_OPERATION - Encounter illegal operation.

(0x00000011) MRM_ERR_LIBRARY_ALREADY _INIT - Function call before the library init.
(0x00000012) MRM_ERR_ARRAY_OUR_OF_RANGE - Encounter the access array out of range.

5.2 GPS Error

(0x04000001) MRM_ERR_GPS_DEVICE_NODE_OPEN_FAIL - Open GPS device node fail. Please
checkout GPS is exist or the device not use by another application.

(0x04000002) MRM_ERR_GPS_DEVICE_NODE_WRITE_FAIL - Encounter write operation fail.
(0x04000003) MRM_ERR_GPS_DEVICE_NODE_READ_FAIL - Encounter read operation fail.
(0x04000004) MRM_ERR_GPS_IS BUSY - SDP device is busy. Try again.

(0x04000008) MRM_ERR_GPS_DEVICE_NODE_READ_TIMEOUT - SDP encounter out of time when
read operation.

(0x04000009) MRM_ERR_GPS_DATA_NOT_READY - GPS in first initialization data not valid.
(0x0400000A) MRM_ERR_GPS_UNKNOWN_HARDWARE - GPS not found on this platform. Please
check out the hardware PCB version.

(0x0400000B) MRM_ERR_GPS_OPEN_FAIL_NO_DATA_IN - Open GPS device node fail. No NMEA
code detected in this node. Please checkout GPS is opened or the device not use by another

application.

