
 

 
 

CHAPTER 14 
 

 
 

 
 
 

USING MACROS 

 

14.1. Types of Macros ............................................................................................ 1 

14.2. Working with Macros................................................................................... 3 

 14.2.1. Creating Macros............................................................................................................. 3
14.2.2. Opening and Closing Macros ........................................................................................ 3 

 

14.4.20. Sound Operation .......................................................................................................... 52 
 

14.2.3. Naming a macro............................................................................................................. 4 
14.2.4. Deleting a macro............................................................................................................ 4 
14.2.5. Saving and Exporting Macros ....................................................................................... 4  
14.2.6. Macro Settings in the Dialog ......................................................................................... 5 

14.3. Writing Macros............................................................................................. 7 

14.3.1. Macro Editor Window ................................................................................................... 7 
14.3.2. Macro Command Properties Tool Window ................................................................... 9 

14.4. Macro Commands and Examples ............................................................. 10 

14.4.1. Macro Notations and Terminology .............................................................................. 10 
14.4.2. Data Transfer ............................................................................................................... 12 
14.4.3. Arithmetic Operation ................................................................................................... 13  
14.4.4. Logical Operation ........................................................................................................ 14 
14.4.5. Calculation................................................................................................................... 16 
14.4.6. Data Conversion .......................................................................................................... 18  
14.4.7. Conditional Operation ................................................................................................. 21 
14.4.8. Program Control .......................................................................................................... 25 
14.4.9. Timer Operation........................................................................................................... 28 
14.4.10. Keypad Operation........................................................................................................ 29  
14.4.11. Recipe Operation ......................................................................................................... 30 
14.4.12. Communication Operation........................................................................................... 31 
14.4.13. System Service............................................................................................................. 32  
14.4.14. Screen Operation ......................................................................................................... 33 
14.4.15. File Operation .............................................................................................................. 34 
14.4.16. Comparison.................................................................................................................. 40  
14.4.17. String Operation........................................................................................................... 41 
14.4.18. Run Operation.............................................................................................................. 49 
14.4.19. Print Operation............................................................................................................. 50 



4 14  
 

 

14-1 CHAPTER 14   USING MACROS

 
This chapt ands 
and acts a by the 
objects can be easily achieved, such as scheduling, data exchanges, conditional operations, and sequential operations. 
 
Note: Do not use macros to control systems that can cause life-threatening and serious injury. 
Note: The real-time OS in the HMI needs to manage multiple tasks at the same time when the application is running. In 

order to not affect the whole performance, please keep the macro as short as possible. 
Note: Macros execute individually and are unaware of other macros. When sharing common variables between macros, 

your application may have possible conflicts. Consider an application where the cycle macro updates the value of an 
address which is used by the event macro. If the event macro alters the address value before the cycle macro uses 
that address, the result of the cycle macro will be incorrect. 

14.1. Types of Macros 

■ Global Macro 
A global macro is a macro that can be used by all panel applications in the same project. With global macros, the panel 
applications in the same project can share common functions without having to keep and maintain the same set of macros 
locally.  

You can set up a password in the Project Information & Protection dialog box to protect global macros. If global macros are 
under protection, you need to enter a password to remove the protection before using them in your application.  

Note that only internal variables can be used in global macros. 
 
■ Local Macro 
A local macro is a macro that can only be used by the panel application which the macro is located in.  
 
■ Sub-macro  
A sub-macro is a macro that can be run by other macros using the CALL command. When a CALL command is 
encountered while running a macro, that macro stops running, and the sub-macro starts to run. The last command of a 
sub-macro must be a RET command which terminates the sub-macro and returns control to the calling macro. You can 
place RET commands at any location you want. The HMI will resume the execution of the calling macro starting with the 
command following the CALL command once the called sub-macro terminates. 
 
By implementing common functions in sub-macros for other macros to use, your macros can be modularized, are sharable, 
easy to read, and easy to maintain. 
 
■ Startup Macro, Main Macro, Event Macro, Time Macro for the application 
■ Open Macro, Cycle Macro, Close Macro for the screen 
■ On Macro, Off Macro, Object Macro for the object 
 
Select the macro that works best for the occasion you want the macro to run, and for the purpose you want the macro to 
do. 

er explains how you can write macros to perform operations. A macro contains a sequence of macro comm
s a simple computer program when it is run. With macros, some tasks that are hard to be performed 

Run the Macro: Use: 
When the application starts Startup Macro 

This macro is run only once when the application starts. The HMI will not display the 
start-up screen until the macro terminates. You can use Startup Macro to initialize 
global data and settings for your application. Specify Startup Macro in Panel General 
Setup dialog box. 

While the application is 
running 

Main Macro 
This macro is run all the time while the application is running. The HMI runs Main 
Macro cyclically, i.e. it will delay preset time to run Main Macro starting from the first 
command again each time after it completes the processing of the last command of 
the macro or when it encounters an END command in the middle of the macro. 
Specify Main Macro in Panel General Setup dialog box. 

Continued 



14 
 

14-2 CHAPTER 14   USING MACROS 

 
Run the Macro: Use: 

When a specific trigger bit 
changes from 0 to 1 

Event Macro 
An Event Macro is run whenever the associated trigger bit changes from 0 (off) to 1 

 are numbered from 1 to 
 

(on). An application can have up to four Event Macros which
4. Specify Event Macros in the Panel General Setup dialog box.

Periodically with a preset time 
val 

Time Macro 
inter A Time Macro is run periodically with a preset time interval. An application can have 

up to four Time Macros which are numbered from 1 to 4. Each Time Macro has a 
different set of time interval options you can choose to specify how often you want the 
macro to run. Specify Time Macros in the Panel General Setup dialog box. 

When a specific screen is Open Macro 
 Open Macro is run once when the associated screen is being opened. The screen 
l not be displayed until the Open Macro terminates. Specify the Open Macro of a 

screen in the Screen Properties dialog box. 

being opened An
wil

While a specific screen is Cycle Macro 
open A Cycle Macro is run all the time while the associated screen is open. The Cycle 

Macros runs cyclically, i.e. the Cycle Macro will run starting from the first command 
again every time after it completes the processing of the last command of the macro, 
or when an END command is encountered in the middle of the macro. The Cycle 
Macro terminates immediately when the screen is closed. Specify the Cycle Macro of 
a screen in the Screen Properties dialog box. 

When a specific screen is Close Macro 
being closed  A Close Macro is run once when the associated screen is being closed. The screen 

will not be erased until the Close Macro terminates. Specify the Close Macro of a 
screen in the Screen Properties dialog box. 

When a specific button is On Macro 
pressed or released to set a 
bit to on 

An On Macro is run once when the associated button is pressed or released to set a 
bit to 1 (on). The setting of the bit will not be performed until the On Macro terminates. 
Therefore, it is important to keep the On Macro as short as possible in order to not 
delay the setting of the bit. Both the Bit Buttons and the Toggle Switches can have an 
On Macro. Specify the On Macro of a button in that button’s configuration dialog box. 

When a specific button is Off Macro 

it to 0 (off). The setting of the bit will not be performed until the Off Macro terminates. 
So it is important to keep the Off Macro as short as possible in order to not delay the 

witches can have an Off Macro. 
 button in that button’s configuration dialog box. 

pressed or released to set a 
bit to off 

An Off Macro is run once when the associated button is pressed or released to set a 
b

setting of the bit. Both Bit Buttons and Toggle S
Specify the Off Macro of a

When a specific object is Object Macro 
activated to perform a specific 
operation 

An Object Macro is run once when the associated object is activated to perform a 
specific operation. Whether the macro is run before or after the operation is 
performed depends on the type of the operation. The objects that can have an Object 
Macro include Screen Buttons, Functio ons, and Keypad Buttons. Specify the 

an object in that object’s configuration dialog box. 
n Butt

Object Macro of 
 



4 14  
 

 

14-3 CHAPTER 14   USING MACROS

 

1 h M

14.2.1. Creating Macros 
■ c

1) lobal macro, use  
Global Macros item in the Pro  
command on the pop-up men

, use mand on the Panel > Macro menu, or right-click the panel application > 
ject M  

n the pop-up men
2) In the New Macro dialog box, 

■ ting an existing macro as

1) To import a macro as a globa  
to bring out the pop-up menu 

To import a macro as a local m  
to bring out the pop-up menu the pop-up menu 

2 le you a new macro from. If you want to open a macro that was saved in a 
er, locate and ope

3) Click Open. 
 

1 os
■ Opening an existing macro 
To open a global macro, select th  
macro in Global > Global Macro t 
c he ma ated after "--------------Global-----------" item in the drop-down list. 
T he m  
p cation > Macros item in  
dialog. If global macros exist, selec  
drop-down list or select the macro 

■ wit ditor window: 
Y e
1 e macro editor window
2) Drag a selection of *.mcr file o
Note: Any macros in the macro ed

 Closing Macro Editor Windows: 
To close a single window, select the window and click the close button. 

To close all windows, choose Windows... on the Window menu, select all the macro editor windows you want to close in 
the window dialog and then click Close Window(s) button. 
Note: The Macro Command Properties Window will be closed automatically when the macro editor window is closed. Even 
if the macro editor window is closed, all the changes will be saved, unless the software exits without saving any changes to 
the file. 

■ Closing Macro Command Properties Window: 
To close the macro command properties window, click the close button on the Macro Command Properties window or 
check/uncheck the Macro Command Properties command on the View menu 

4.2. Working wit acros 

 Creating a new and blank ma

To create a g

ro 

 the Add… command on the Project > Global Macro menu, or right-click the Global >
ject Manager tool window to bring out the pop-up menu and then use the Add Macro…
u. 

To create a local macro
Macros item in the Pro
command o

the Add… com
anager tool window to bring out the pop-up menu and then use the Add Macro…

u, or  
type the name you want, and hit the ENTER key or click the OK button to validate your 

choice. 

 Impor  a copy macro 

l macro, right-click the Global > Global Macros item in the Project Manager tool window
and then use the Import Macro… command on the pop-up menu. 

acro, right-click the panel application Macros item in the Project Manager tool window
and then use the Import Macro… command on 

) Click the *.mcr or *.txt fi
different fold

 want to create 
n the folder first. 

4.2.2. Opening and Cl ing Macros 

e macro you want to open in Project > Global Macro > Edit menu, or double click the
s item in the Project Manager tool window, or in the Macro settings of the objec

onfiguration dialog, select t

o open a local macro, select t
anel appli

cro that is loc

acro you want to open on Panel > Macro > Edit menu, or double click the macro in the
 the Project Manager tool window, or in the Macro settings of the object configuration
t the macro that is located from the beginning to "--------------Global-----------" item in the
in the drop-down list. 

 Opening a *.txt or *.mcr file 
ou may do the drag-and-drop op
) Open th

hin the macro e
ration: 
 by clicking any of the existing macros. 
r *.txt file into the macro editor window and drop it. 
itor window will be replaced by macros from the source file. 

■



14 
 

14-4 CHAPTER 14   USING MACROS 

 

When adding a new macro for global use or for the panel application, you need to specify the macro name with the 

14.2.3. Naming a macro 

following dialog. 

 

Specify the macro name here. The 

insensitive. For example, the names TURN 

same.

maximum length for a macro name is 256 
characters. Macro names are case 

ON and turn on are considered to be the 
 

 
When importing a file as the macro, the file name will be the macro name as the default.  
In e ch panel application, the local macro name has to be unique, but a local macro name can be the same as a global 

e. 
a

macro nam
 

 the macro to display the macro item's pop-up menu; and then click Rename, the second menu item. 
) Once the macro name is selected, simply type the new name over the selected text, and then press the ENTER key. 

m.  

 

, and select the macro you want to delete on the 

e is used by an application or object, 

 

. 
e and open the folder first, then click Save. 

■ Renaming a macro from Project Manager: 
1) Locate the macro you would like to rename 
2) Right-click on
3
 

14.2.4. Deleting a macro 
■ Deleting a macro from Project Manager tool widow: 
1) Locate the macro you would like to delete 
2)  Right-click on the macro to display the macro item's "pop-up menu"; and then click Delete, the third menu ite
 
■ Deleting a macro by menu 
To delete a global macro, choose Project menu, click Global Macro sub-menu, and select the macro you want to delete on 
the Delete sub-menu 
To delete a local macro, choose Panel menu, click Macro sub-menu
Delete sub-menu 
 
Note: You can only select one macro to delete at a time. If the macro you want to delet
you will be asked to confirm the delete operation. 

14.2.5. Saving and Exporting Macros 
If you have a macro you want to reuse in another application panel, you can export the macro as a .txt file or a .mcr file. 
You may do the following: 
1) Locate the macro you would like to export 
2) Right-click on the macro to display the macro item's "pop-up menu"; and then click Export Macro..., the fourth menu 

item
3) If you want to save a macro in a different folder, locat



4 14  
 

 

14-5 

 

14.2.6. Macro Settings in the Dialog 
 page. 

n example of the Macro page in the Bit Button configuration dialog. 
You can open and edit a specified macro or create a new macro in the configuration dialog that contains the macro
The following is a

 
 

The following table describes each property in the General page. 

Property Description 
Macro Name Select an existing local macro or global macro from the drop-down list. The following is a 

sample in the dropdown list 

CHAPTER 14   USING MACROS

   
New… Click the button to bring out the New Macro dialog box to create a new and blank local macro. 

Continued

Local Macros

A separator that is used to 
separate the local macros 
and global macros. It shows 
only when global macros 
exist. 

Global Macros



14 
 

14-6 CHAPTER 14   USING MACROS 

 
Property Description 

Macro Editor Write and edit the macros here. For details, see Section 14.3.1. If the editor window is too 

the dialog, allowing you to position 
it wherever you want it to be. Release the mouse button to let go of the window. Click on the 
resized tabs located at the bottom right corner of the window to resize the window. Press the 
close button to dock the window back into the dialog. The following is a sample of the floating 
macro editor window. 
 

Window small, you may drag out the window and resize it. To drag and move the window, left-click 
anywhere on the window frame and hold down the button, then drag the mouse to move the 
window outside to another area. It will “float” over the rest of 

 
 

Click anywhere on 
the window frame to 
drag out the window. 

Properties A floating dialog allows you specify the macro command. For details, see Section 14.3.2. The 
macro command properties dialog can be moved anywhere and resized to any size you want. 
However, it can’t be closed until the dialog is closed. 

 

Click the close button 
to dock the window 
back into the dialog. 

Click here to resize 
the window.



4 14  
 

 

14-7 

 

1 ing M

In the software, all the m
the Macro Editor Window
 
You will see the following  

 
 
 
 

4.3. Writ acros 

acros can be written in the macro development environment that is composed of two elements: 
 and the Macro Command Properties Tool Window.  

 sample of the Macro Development Environment when opening a macro from Project Manager. 

Macro Command 
Properties Tool WindowMacro Editor Window

 
 

14.3.1. Macro Editor Window 
The macro editor is a text-based editor with syntax coloring and line numbering. Line numbering in the left margin of the 
page helps you refer to the specific position of the macro. Syntax coloring gives you visual cues about the structure by 
using different colors for various elements, such as keywords in black, comments in green, addresses in blue and 
constants in red.  

■ Editing Macro 

With the macro editor, you can cut, copy, and paste selected text using menu commands, key combinations or 
drag-and-drop operations. You can also undo and redo selected editing actions.  

You can right-click to display a pop-up menu of editing commands. The editing commands available depend on what the 
pointer is pointing to.  

 

 

CHAPTER 14   USING MACROS



14 
 

14-8 CHAPTER 14   USING MACROS 

The macro editor allows the following editing actions:  
• Cutting, copying, pasting, and deleting selection of lines, multiple lines or text 

 actions  
or copy a selection of text within one macro editor window, or between macro 

editor windows. 

• Undoing and redoing editing
• Using drag-and-drop editing to move 

The following table shows the supported editing commands. 

Menu Command Key Combination Description 
Cut CTRL+X Removes selected text from the active macro editor window. 
Copy CTRL+  cates selected text in the active macro edC Dupli itor window. 
Paste CTRL tes cut or copied text into an active ma+V Pas cro editor window. 
 DELETE Deletes text without copying it to the Clipboard. 
Undo CTRL+Z Reverses the last editing action. 
Redo CTRL+Y Reapplies the prior editing that has been undone. 
 CTRL+A Selects all texts in the active macro editor 

Note that all editing commands require a selection in order to work. Some commands can make a selection based on the 
current cursor location. 

■ Using Comments in Macros 

Comments are notes to be ignored when running the macro commands. Macro supports both single-line comments and 
block comments. Single-line comments begin with two forward slashes (//) and run to the end of the line. 
The following is an example of a macro command followed by a single-line comment. 
IF $U0.0 (B) // Key Down 
 
Block comments begin with an opening delimiter (/*) and run to a closing delimiter (*/). Comments do not nest.  
The following is an example of a block comment. 
/* $N1001=WH2021  
  $N1010=$N1001 */ 

■ Specifying Constants in Macros 

To specify a hexadecimal number, use either the h or H suffix. For example, 12abH and 3ABh are valid hexadecimal 
numbers. You can also use either the “0x” or “0X” prefix. For example, 0x1278abc and 0XFFFF0000 are valid hexadecimal 
numbers. 

To specify a binary number, use either the b or B suffix. For example, 001100111b and 11110000B are valid binary 
numbers. 

 just type the numbers as they are to specify the constants. However, ambiguity 

d suffix for an integer number. For example, -123K and -123d are valid specifications of constant -123. 
2)   Use either the f or F suffix for a decimal number with decimal point. For example, -12.3F and -12.3f are valid 

nt -12.3. 

For decimal numbers, in most cases, you
exists when a constant is the same as a valid external variable. For example, if a panel application has a link to a Modicon 
ModBus slave device, it is impossible to tell whether the number 40001 is a constant or a word address of the controller. To 
avoid this kind of ambiguity, use the following methods to explicitly declare that a number is a constant: 

1)   Use K, k, D, or 

specifications of consta



4 14  
 

 

14-9 

 

14.3.2. Macro Command Properties Tool Window 

The Macro Command Properties Tool Window help you add and modify a macro command quickly and easily. 

Macro Properties Tool Window will be opened as a docking 
w ily le tool window to automatically b  hide, or tab link with other tool 
w s, or dock agai es, or float ove pen or close 
the Macro Command Prop ool Window by clicking the [M u.  

I en the macro ject's configur side the 
Macro Editor and can nywhere, but 

The following table de roperty in t l window. 

If you open a macro from Project Manager or Menu Item, the 
indow. You can eas configure the dockab e displayed or
indow nst the edg r. When the Macro Editor is opened, you can also choose to o

r [View] menerties T acro Command Properties] menu item unde

f you op  from an ob ation dialog box, the Macro Properties Tool Window will float be
be moved a it can't be closed.  

scribes each p he macro command properties too

Property Description 
Command ck the dropdow election dialog. In the dialog, 

shown in the dropdown list after the dialog is closed. To cancel the operation, click 
where outside the macro command selection dialog.  

Cli n list box to bring up the macro command s
navigate the keyword of macro commands through tabs and sections by moving the 
mouse and then clicking the selection. The format of the selected macro command will be 

any
Data Type Selects the data type of the macro command from the dropdown list. Different macro 

commands support different data types. The supported data types for each macro 
command are some of the following: (S) 16-bit Signed, (U) 16-bit Unsigned, (SD) 32-bit 

 Bit. Signed, (UD) 32-bit Unsigned, (F) 32-bit Floating Point, (B)
<Edit 
Box> 

Specifies the bit variable when the Data Type is (B). 

CHAPTER 14   USING MACROS

Specifies the word variable when the Data Type is (U)/(S). 
-word variable when the Data Type is (UD)/(SD)/(F). Specifies the double

Parameter 

Click this icon to bring up the Address Input Keypad and specify the desired address for 
the Variable field.  

 Variable field. 
Click this icon to bring up the Select Tag dialog box and select the desired tag for the 

Macro Command Help Shows the operation and parameter type of the selected macro command. 

Note that any modification in the dialog will change the current macro command in the Macro Editor. 



14 
 

14-10 CHAPTER 14   USING MACROS 

 

14.4. Macro Commands and Examples 

1)  P1, P2, P3, P4, P5: Parameters of macro commands. 
fic 

14.4.1. Macro Notations and Terminology 
The following notations and terminology will be used in the Macro Commands and Examples sections. 

■ Notations 

2)  I, E, C, A, CS, M, AE, CE: Used to indicate the type of parameter a macro command can accept for a speci
command parameter.  

Abbreviation Parameter Type 
I Internal Variable 
E External Variable 
C Constant 
A ASCII character string 
CS Character string of the program label 
M Sub-macro name 
AE Arithmetic expression 
CE Comparison expression 

 
3  S : Used upport. )  U, S, UD, D, F, B  to indicate the types of data a macro command can s

Abbreviation Data Type 
U 16-bit Unsigned Integer  
S 16-bit Signed Integer 
UD 32-bit Unsigned Integer 
SD 32 ger -bit Signed Inte
F 32-bit Floating Point 
B Bit 

■ Terminology 

Terminology Definition 
Internal memory The memory space in the HMI that can be accessed by the panel application. For example, 

the user memory $U, the non-volatile memory $N, the system memory $S, and the recipe 
memory $R are all parts of the internal memory. 

Internal variable An address or a tag referring to an address of a space in the internal memory. 
Internal bit variable An internal variable that refers to a bit in the internal memory.  

For ease of reading, “internal variable” is used instead of “internal bit variable” when referring 
to a bit if there is no ambiguity. 

Internal word variable An internal variable that refers to a word in the internal memory. 
The variables can also be used to refer to a double-word, a block of bytes (byte array), a block 
of words (word array), and a block of double-words (double-word array). 

For ease of reading, “internal variable” is used instead of “internal word variable” when 
referring to a word or a block of memory space if there is no ambiguity, 

External memory The memory space or collection of addressable devices in the controllers that can be 
accessed by the panel application through communication links. 

Continued 



4 14  
 

 

14-11 CHAPTER 14   USING MACROS

 
 

Terminology Definition 
External variable An address or a tag referring to an address of a space in the external memory. 
External bit variable An external variable that refers to a bit in the external memory. 

e” when referring 
to a bit if there is no ambiguity.
For ease of reading, “external variable” is used instead of “external bit variabl

 
External word 
variable 

An external variable that refers to a word in the external memory. 
The variables can also be used to refer to a double-word, a block of bytes (byte array), a block 

ck of double-words (double-word array) if the access unit of 

er to a double-word or a block of memory space with a length of a multiple of 4 

ing, “external variable” is used instead of “external word variable” when 
 or a block of memory space if there is no ambiguity, 

of words (word array), and a blo
the associated addresses is word. If the access unit is double-word, you can only use the 
variable to ref
(bytes). 

For ease of read
referring to a word

Expression  
Type Abbreviation Description 

Arithmetic 
Expression u

AE Sequences of operators and parameters that are 
sed for computing a value from the parameters.

Comparison 
 Expression

CE Sequences of operators and parameters that are 
used for comparing value from the parameters.  

The software provides the following types of operators for macro expressions: 

Operators Name or Meaning Grouping Used for 
( ) Parentheses Left to right AE/CE 
* Multiplication Left to right 
/ Division Left to right 
% Modulus Left to right 
+ Addition Left to right 
- Subtraction Left to right 
<< Left shift Left to right 
>> Right shift Left to right 

AE 

< Less than Left to right 
> Greater than Left to right 
<= Less than or equal to Left to right 
>= Greater than or equal to Left to right 
== Equality Left to right 
!= Inequality Left to right 

CE 

& Bitwise AND Left to right 
^ Bitwise exclusive OR Left to right 
| Bitwise inclusive OR Left to right 

AE 

&& Logical AND Left to right CE 
|| Logical OR Left to right CE 
= Assignment Right to left AE/CE 

Note: The above table lists the operators in order of precedence (from highest to lowest 
precedence). Operators in the same segment of the table have equal precedence and are 
evaluated in the given order in an expression unless explicitly forced by parentheses.  

 
 
 
 



14 
 

14-12 CHAPTER 14   USING MACROS 

14.4 nsfer 

Assignm

 

.2. Data Tra

ent ( = ) 

Format P1 = P2 Data Type U/S/UD/SD/F/B 
Function Assigns the value of P2 to P1. 
P1 (I/E) The destination. 
P2 (I/E/C/AE) The source. 
Example 1 $U2 = 123.45 (F) /* Assign 123.45 to $U2 (and $U3) */ 
Example 2 $U100.f = 1 (B) /* Turn on the specified bit */ 
Example 3 W6  + $W50 - 1000) / 2 (SD) /* Write the result of the arithmetic expression to W60. */ 0 = ($U30
Example 4 V0.0 = 2\M0 (B) /* Assign the bit value of M0 of link 2 to the bit V0.0 of link 1*/ 

Logical NOT ( = ! ) 

Format P1 = ! P2 Data Type B 
Function Reve  saves the result in P1.rses P2 and  
P1 (I/E) The location to save the result. 
P2 (I/E) The operand. 
Example 1 $U2.3 = !$U3.4 (B) /* If $U3.4 is 1 (On), $U2.3 is 0 (Off) */ 

" " 

Format P1 = 2"  "P
Function Copi  the quoted AS cter string P2 to P1. Note g is a null terminated string. 

If the gth of the str n N+1 bytes will be copi the last byte is 0. 
es CII chara  that the strin
 len ing is N the ed to P1 and 

P1 (I) The tion to save tloca he result. 
P2 (A) The quoted ASCII cha  racter string.
Example 1 $U60 EST" /* The null character (00h) will be moved te of $U62 */  = "T  to the low by
Example 2 $U20 BCDE" /* The null character (00h) will be moved to the high byte of $U22 */  = "A

MOV 

Format P1 = MOV(P2,P3) Data Type U 
Function Copi 3 words of Pes P 2 to P1. 
P1 (I/E) The ocation of the memory to receive the copy. starting l
P2 (I/E) The ting location of the memory to be copied. star
P3 (I/C) The number of words to be copied. 
Example 1 $U10 V($U200 rds starting o $U100 */ 0 = MO , 16) /* Copy the 16 wo from $U200 t
Example 2 W60 MOV($U200, $ array starting  with the size specified in 

$U2 to W60.*/ 
 = U2) /* Copy the word  from $U200

Example 3 $U10  MOV(2\D100 100 ~ D109 of link 2 t 19.*/  = ,10) /* Copy D o $U10 ~ $U

 



4 14  
 

 

14-13 CHAPTER 14   USING MACROS

 

SETM 

Format P1 = SETM(P2,P3) Data Type U 
Function Sets P3 rds of P1 to word value P2.  wo

P1 (I/E) The starting location of the memory to be set. 
P2 (I/C) The set value or the location that holds the set value. 
P3 (I/C) The number of words to be set. The max. no. of words are 512. 
Example 1 $U100 = SETM(0, 16) /* Set the 16 words starting from $U100 to 0. */ 
Example 2 W60 = SETM($U200, $U2) /* Set the words o

specified in $U2 to the value of $U200.*/ 
f the word array starting from W60 with the size 

 

14.4.3. Arithmetic Operation 

Addition  + ) (

Format P1 = P2 + P3 Data Type U/S/UD/SD/F 
Function esult in P1. Adds P2 and P3 and saves the r

P1 (I/E) The location to save the result. 
P2,P3 (I/E/C/AE) The operands. 
Example 1 $U100 = $U101 + $U102 (U) 
Example 2 W100 = 0.3*$U0 + 0.1*$U2 + 0.6*$U4 (F) 

S  ( - ) ubtraction

Format P1 = P2 - P3 Data Type U/S/UD/SD/F 
Function  the result in P1. Subtracts P3 from P2 and saves

P1 (I/E) The location to save the result. 
P2,P3 (I/E/C/AE) The operands. 
Example 1 $U100 = $U101 - $U102 (U) 

Example 2 W100 = 0.3*$U0 - 10.75 (F) 

Multiplication ( * ) 

Format P1 = P2 * P3 Data Type U/S/UD/SD/F 
Function Multiplies P2 by P3 and saves the product in P1. 

P1 (I/E) The location to save the product. If the product overflows, the higher bits exceeding the limit will 
will be stored in P1. be truncated and the remaining bits 

P2,P3 (I/E/C/AE) The operands. 
Example 1 $U100 = $U102 * 0x192 
Example 2  $U2) * ($U4 + $U6) (F) W100 = ($U0 +

 



14 
 

14-14 CHAPTER 14   USING MACROS 

n ( / ) 

 

Divisio

Format P1 = P2 / P3 Data Type  U/S/UD/SD/F
Function Divides P2 by P3 and saves the quotient in P1. 

P1 (I/E) The location to save the result. 
P2,P3 (I/E/C/AE) The operands. 
Example 1 $U100 = $U101 / $U102 (U) 

Example 2 W100 = ($U0 + $U2) / ($U4 + $U6) (F) 

Modulus ( % ) 

Format P1 = P2 % P3 Data Type U/S/UD/SD 
Function Divides P2 by P3 and saves the remainder in P1. 

P1 (I/E) The location to save the result. 
P2,P3 (I/E/C/AE) The operands. 
Example 1  % 16(U) $U100 = $U30
Example 2 W100 = $U200 % ($U402 + $U106) (SD) 

 

1

B ive OR

4.4.4. Logical Operation 

itwise Inclus  ( | ) 

Format P1 = P2 | P3 Data Type U/UD/B 
Function Performs bitwise Inclusive OR operation of P2 and P3 and saves the results in P1. 

P1 (I/E) The location to save the result. 
P2,P3 (I/E/C) The operands 
Example 1 

11100001111b | W60 (U) /* The value of $U100 is 1111111100001111b */ 
W60 = 1111000000001111b 
$U100 = 00001

Example 2 B15 = $U1.2 | B14 (B) /* If either $U1.2 or B14 has a value of 1(On), B15 has the value 1(On). 
 0(Off)*/ Otherwise, B15 has the value

Bitwise AND ( & ) 

Format P1 = P2 & P3 Data Type U/UD/B 
Function Performs bitwise AND operation of P2 and P3 and saves the results in P1. 

P1 (I/E) The location to save the result. 
P2,P3 (I/E/C) The operands 
Example 1 W60 = 1111000000001111b 

111b & W60 (U) /* The value of $U100 is 0000000000001111b */ $U100 = 0000111100001
Example 2 B15 = $U1.2 & B14 (B) /* If both $U1.2 and B14 are 1(On), B15 is set to 1(On). Otherwise B15 is 

set to 0(Off) */ 

 



4 14  
 

 

14-15 CHAPTER 14   USING MACROS

 

Bitwise Exclusive OR ( ^ ) 

Format P1 = P2 ^ P3 Data Type U/UD/B 
Function Performs bitwise Exclusive OR operation of P2 and P3 and saves the results in P1. 

P1 (I/E) The location to save the result. 
P2,P3 (I/E/C) The operands 
Example 1 W60 = 1111000000001111b 

$U100 = 0000111100001111b ^ W60 (U) /* The value of $U100 is 1111111100000000b.*/ 
Example 2 B15 = $U1.2 ^ B14 (B) /*If both $U1.2 and B14 are 1(On) or 0(Off), the B15 is set to 0(Off). 

Otherwise B15 is set to 1(On)*/ 

L ( << ) eft Shift 

Format P1 = P2 << P3 Data Type U/UD 
Function d saves the results in P1. The operation supports the logic shift Shifts P2 to the left by P3 bits an

only. 
P1 (I/E) The location to save the result. 
P2 (I/E/C) The value or the location that holds the value to be shifted. 
P3 (I/E/C) The number of bits to be shifted. 
Example 1 $U100 = $U101 << 8 (U) 
Example 2 W200 = W100 << $U10 (UD) 

Right Shift ( >> ) 

Format P1 = P2 >> P3 Data Type U/UD 
Function nd saves the results in P1. The operation supports the logic shift Shifts P2 to the right by P3 bits a

only. 
P1 (I/E) The location to save the result. 
P2 (I/E/C) The value or the location that holds the value to be shifted. 
P3 (I/E/C) The number of bits to be shifted. 
Example 1 $U100 = $U101 >> 8 (U) 
Example 2 W200 = W100 >> $U10 (UD) 

Logical AND ( && ) 

Format P1 = P2 && P3 Data Type B 
Function  are 1, otherwise saves 0 in P1.  Saves 1 in P1 if both P2 and P3
P1 (I/E) The bit to save the result. 
P2,P3(I/E/C) The operands. 
Example 1 $U100.0 = $U101.0 && $U101.1 (B) 

 



14 
 

14-16 CHAPTER 14   USING MACROS 

 

Logical OR ( || ) 

Format P1 = P2 || P3 Data Type B 
Function Saves 1 in P1 if either or both P2 and P3 are 1, otherwise saves 0 in P1.  

P1 (I/E) The bit to save the result. 
P2,P3(I/E/C) The operands. 
Example 1 $U100.0 = $U101.0 || $U101.1 (B) 

 

14.4.5. Calculation 

MAX 

Format P1 = MAX(P2,P3) Data Type U/S/UD/SD/F 
Function Sets P1 to the larger value of P2 and P3. 

P1 (I/E) cation to save the result. The lo
P2,P3(I/E/C) The operands. 
Example 1 $U100 = MAX(100, 200) /* Set $U100 to 200 */ 

MIN 

Format P1 = MIN(P2,P3) Data Type U/S/UD/SD/F 
Function Sets P1 to the smaller value of P2 and P3. 

P1 (I/E) The location to save the result. 
P2,P3(I/E/C) The operands. 
Example 1 $U100 = MIN(100, 200) /* Set $U100 to 100 */ 

BMAX 

Format P1 = BMAX(P2,P3) Data Type U/S/UD/SD/F 
Function Finds the maximum in an array starting from P2 with P3 elements and saves the result in P1.  

P1 (I) The location to save the result. 
P2 (I) The starting location of the array. 
P3 (I/C) The size of the array. 
Example 1 $U200, 16) (F) /* Find the maximum among oin mbers starting 

 save the result in $U100 */ 
$U100 = BMAX(
from $U200  and

16 floating p t nu

BMIN 

Format P1 = BMIN(P2,P3) Data Type U/S/UD/SD/F 
Function Finds the minimum in an array starting from P2 with P3 elements and saves the result in P1.  

P1 (I) The location to save the result. 
P2 (I) The starting location of the array. 
P3 (I/C) The size of the array. 
Example 1 $U100 = BMIN($U200, 60) (F) /* Find the minimum among 60 floating point numbers starting from 

$U200 and save the result in $U100 */ 
 
 
 
 
 



4 14  
 

 

14-17 CHAPTER 14   USING MACROS

 

SUM 

Format P1 = SUM(P2,P3) Data Type U/S/UD/SD/F 
Function Calculates the sum of the value in an array starting from P2 with P3 elements and saves the 

result in P1. 

P1 (I) The location to save the result. 
P2 (I) The starting location of the array. 
P3 (I/C) The size of the array. 
Example 1 $U1

$U
00 = SUM($U200, 16) (F) /* Calculate the sum of 16 floating point numbers starting from 

200 and save the result in $U100 */ 

XSUM 

Format P1 = XSUM(P2,P3) Data Type U/UD 
Function Calculates one element XOR (Bitwise Exclusive OR) sum of all the P3 elements in an array 

esult in P1. starting from P2 and saves the r

P1 (I) The location to save the result. 
P2 (I) The starting location of the array. 
P3 (I/C) The size of the array. 
Example 1 $U100 = XSUM($U200, 5) (UD) /* Perform XOR sum of 5 32-bit unsigned numbers starting from 

e result in $U100.  Another expression of  $ ^ 
U206 ^ $U208 (UD) */ 

$U200 and save th
$U202 ^ $U204 ^ $

 XOR sum is U100 = $U200 

 
$U100 =1001B 
$U101 =1100B 
$U102 =0110B 
$U120 = XSUM($U100,3) /* $U120=0011B */ 

SWAP 

Format SWAP(P1,P2) D Uata Type  
Function Swaps the low byte and high byte of every word in a word array starting from P1 with P2 words. 

P1 (I) The starting location of the array. 
P2 (I/C) The size of the array. 
Example 1 0000B 

e 0000000011111111B, The value of $U121 will 
be 000000010000001B */ 

$U120=111111110000
$U121=1000000100000000B 
SWAP($U120, 2) /*  The value of $U120 will b

 



14 
 

14-18 CHAPTER 14   USING MACROS 

 

4.4.6. Data Conversion 

 

1

BCD 

Format P1 = BCD(P2) Data Type U/UD 
Function Converts binary number P2 to a BCD number and saves the result in P1. 

P1 (I/E) The location to save the result. 
P2 (I/E/C) The binary number to be converted. 
Example 1  of $U100 will be 1234. */ $U100 = BCD(0x1234) (U) /* The value

BIN 

Format P1 = BIN(P2) Data Type U/UD 
Function Converts BCD number P2 to a binary number and saves the result in P1. 

P1 (I/E) The location to save the result. 
P2 (I/E/C) The BCD number to be converted. 
Example 1 0 will be 0x1234. */ $U100 = BIN(1234) (U) /* The value of $U10

DW 

Format P1 = DW(P2) Data Type U/S 
Function Converts 16-bit number P2 to a 32-bit number and saves the result in P1. 

P1 (I/E) The location to save the result. 
P2 (I/E/C) The 16-bit number to be converted. 
Example 1 345) (S) /* The value of $U100 will be 12345 and the value of $U101 will be 0. */ $U100 = DW(12

Example 2 345) (S) /* The value of $U200 will be -12345 and the value of $U201 will be $U200 = DW(-12
0xFFFF. */ 

W 

Format P1 = W(P2) Data Type  UD/SD
Function Converts 32-bit number  to a 16-bit number and saves th . The truncation error P2 P1

may occur. 
e result in 

P1 (I/E) The location to save the result. 
P2 (I/E/C) e converted. The 32-bit number to b
Example 1 $U100 = W(0x12345678) (UD) /* The value of $U100 will be 0x5678 */ 

Example 2  value of $U200 will be -12345 */ $U200 = W(-12345) (SD) /* The

 



4 14  
 

 

14-19 CHAPTER 14   USING MACROS

 

B2W 

Format P1 = B2W(P2,P3) Data Type U 
Function Converts P3-byte array starting from P2 to a P3-word array and saves the result in P1. All the high 

d array are set to 0. bytes of the wor
P1 (I) The location (or the word array) to save the result. 
P2 (I) The byte array to be converted. 
P3 (I/C) The size of the byte array. 
Example 1 $U200 = 0x45FA 

$U201 = 0xEB29 
$U100 = B2W($U200, 3) /* Convert 3 bytes starting from $U200 to 3 words starting from $U100, 

 will be 0x45 and $U102 will be 0x29. */$U100 will be 0xFA, $U101  

W2B 

Format P1 = W2B(P2,P3) Data Type U 
Function Converts a word array P2 with P3 elements to a byte array and sa

P1. The conversion discards the high byte of every element of the
ves the result in the byte array 
 word array to form a byte array 

with the same number of elements. The array size cannot exceed 256. 

P1 (I) The location (or the word array) to save the result. 
P2 (I) The word array to be converted. 
P3 (I/C) The size of the word array. 
Example 1 $U200 = 0x45FA 

$U201 = 0xEB29 
$U202 = 0xC781 
$U100 = W2B($U200, 3) /* Convert 3 words starting from $U200 to 3 bytes starting from 
$U100,  $U100 will be 0x29FA and the low byte of $U101 will be 0x81*/ 

A2X 

Format P1 = A2X(P2) Data Type U 
Function Converts a 4-digit hex number in ASCII character form to a binary number and saves the result in 

P1. The character of the fourth digit is in the first word of the word array P2 and the characters o
the other dig

f 
its are in the following words in sequence. 

P1 (I) The location to save the result. 
P2 (I) The word array that contains the characters to be converted. 
Example 1 $U20 = 49 // '1' 

$U21 = 50 // '2' 
$U22 = 69 // 'E' 
$U23 = 70 // 'F' 
$U100 = A2X($U20) /* The value of $U100 will be 0x12EF. */ 

 



14 
 

14-20 CHAPTER 14   USING MACROS 

 

X2A 

Format P1 = X2A(P2) Data Type U 
Function Converts 16-bit number P2 to a 4-digit hex number in ASCII character form and saves the result 

in word array P1. The character of the fourth digit is saved in the first word of P1 and the 
ing words in sequence. characters of the other digits are saved in the follow

P1 (I) The location (or the word array) to save the result. 
P2 (I/C) The number to be converted. 
Example 1 $U10 = X2A(0x34AB) /*The 4 words starting from $U10 will be: 51('3'), 52('4'), 65('A'), 66('B') */ 

W2F 

Format P1 = W2F(P2) Data Type U/S 
Function Converts 16-bit number P2 to a floating point number and saves the result in P1. 

P1 (I/E) The location to save the result. 
P2 (I/E/C) to be converted. The 16-bit number 
Example 1 $U200 = W2F($U10) (S) 

D2F 

Format P1 = D2F(P2) Data Type UD/SD 
Function r and saves the result in P1. Converts 32-bit number P2 to a floating point numbe

P1 (I/E) The location to save the result. 
P2 (I/E/C)  to be converted. The 32-bit number
Example 1 0) (SD) $U200 = D2F($U1

F2W 

Format P1 = F2W(P2) Data Type F 
Function g point number P2 to a 16-bit number and sa lt i 1. Converts floatin ves the resu n P
P1 (I/E) The location to save the result. 
P2 (I/E/C) The floating point number to be converted. 
Example 1 $U200 = F2W($U10) (F) 

F2D 

Format P1 = F2D(P2) Data Type F 
Function  point number P2 to a 32-bit number and saves the result in P1. Converts floating

P1 (I/E) ave the result. The location to s
P2 (I/E/C) The floating point number to be converted. 
Example 1 $U200 = F2D($U10) (F) 

 



4 14  
 

 

14-21 CHAPTER 14   USING MACROS

 

EXTRACT_BIT 

Format P1 = EXTRACT_BIT(P2,P3) Data /U Type U D 
Function Extracts bit P3 from P2 and saves the result in P1. 

P1 (I) The bit to save the result. 
P2 (I) The location to extract the bit. 
P3 (I/C) The number of the bit to be extracted. 
Example 1 $U2.0 = EXTRACT_BIT($U10, 31) (UD) /* Extract bit 31 of the double word $U10 and save the 

result in $U2.0 */ 
 

1 ondition n 

IF

4.4.7. C al Operatio

 == 

Format IF P2 == P3 Data Type U/S/UD/SD/F 
Function Executes the commands i

P3. 
n the command block following this IF command when P2 is equal to 

P2,P3 (I/E/C/AE) The operands. 

IF != 

Format IF P2 != P3 Data Type U/S/UD/SD/F 
Function ommand block following this IF command when P2 is not equal Executes the commands in the c

to P3. 

P2,P3 (I/E/C/AE) The operands. 

IF > 

Format IF P2 > P3 D U/S/UD/SD/F ata Type 
Function Executes the commands in the command block following this IF command when P2 is greater 

than P3. 

P2,P3 (I/E/C/AE) The operands. 

IF >= 

Format IF P2 >= P3 Data Type U/S/UD/SD/F 
Function ands in the command block following this IF co when P2 is greater 

 P3. 
Executes the comm
than or equal to

mmand 

P2,P3 (I/E/C/AE) The operands. 

IF < 

Format IF P2 < P3 Data Type U/S/UD/SD/F 
Function Executes the commands in the command block following this IF command when P2 is less than 

P3. 

P2,P3 (I/E/C/AE) The operands. 
 
 
 
 
 
 



14 
 

14-22 CHAPTER 14   USING MACROS 

 

IF <= 

Format IF P2 <= P3 Data Type S/UD/SD/F  U/
Function Executes the commands in the command block following this IF command when P2 is less than 

or equal to P3. 

P2,P3 (I/E/C/AE) The operands. 

IF & 

Format IF P2 & P3 Data Type U/UD 
Function Executes the commands in the command block following this IF command when the result of 

Bitwise AND between P2 and P3 is non-zero. 

P2,P3 (I/E/C/AE) The operands. 

IF !& 

Format IF !(P2 & P3) Data Type U/UD 
Function Executes the commands in the command block following this IF command when the result of 

Bitwise AND between P2 and P3 is zero. 

P2,P3 (I/E/C/AE) The operands. 

IF <bit> 

Format IF P2 D Bata Type  
Function Executes the commands in the command block following this IF command if the condition P2 is 

true (1/On). 

P2 (I/E/CE) The condition. 

IF !<bit> 

Format IF !P2 Data Type B 
Function Executes the commands in the command block following this IF command if the condition P2 i

false (0/O
s 

ff). 

P2 (I/E/CE) The condition. 

ELIF == 

Format ELIF P2 == P3 Data Type U/S/UD/SD/F 
Function Executes the commands in the command block following this ELIF command when P2 is equa

to P3. 
l 

P2,P3 (I/E/C/AE) The operands. 

ELIF != 

Format ELIF P2 != P3 Data Type U/S/UD/SD/F 
Function Executes the commands in the command block following this ELIF command when P2 is not 

equal to P3. 

P2,P3 (I/E/C/AE) The operands. 
 
 
 
 
 
 



4 14  
 

 

14-23 CHAPTER 14   USING MACROS

 

ELIF > 

Format ELIF P2 > P3 D Uata Type /S/UD/SD/F 
Function Executes the commands in the command block following this ELIF command when P2 is greater

than P3. 
 

P2,P3 (I/E/C/AE) The operands. 

ELIF >= 

Format ELIF P2 >= P3 D U/S/UD/SD/F ata Type 
Function Executes the commands in the command block following this ELIF command when P2 is grea

than or equal to P3. 
ter 

P2,P3 (I/E/C/AE) The operands. 

ELIF < 

Format ELIF P2 < P3 D  ata Type U/S/UD/SD/F
Function Executes the commands in the command block following this ELIF command when P2 is less

than P3. 
 

P2,P3 (I/E/C/AE) The operands. 

ELIF <= 

Format ELIF P2 <= P3 Data Type U/S/UD/SD/F 
Function Executes the commands in the command block following this ELIF command when P2 is less 

than or equal to P3. 

P2,P3 (I/E/C/AE) The operands. 

ELIF & 

Format ELIF P2 & P3 Data Type U/UD 
Function Executes the commands in the command block following this ELIF command when the result of 

Bitwise AND between P2 and P3 is non-zero. 

P2,P3 (I/E/C/AE) The operands. 

ELIF !& 

Format ELIF !(P2 & P3) Data Type U/UD 
Function Executes the commands in the command block following this ELIF command when the result of 

Bitwise AND between P2 and P3 is zero. 

P2,P3 (I/E/C/AE) The operands. 

ELIF <bit> 

Format ELIF P2 Data Type B 
Function Executes the commands in the command block following this ELIF command if the condition P2

is true (1/On)
 

. 

P2 (I/E/CE) The condition. 
 
 
 
 
 



14 
 

14-24 CHAPTER 14   USING MACROS 

LIF !<bit> 

 

E

Format ELIF !P2 Data Type B 
Function ands in the command block following this ELIF comm ition P2 

 
Executes the comm
is false (0/Off).

and if the cond

P2 (I/E/CE) The condition. 

ELSE 

Format ELSE 

Function pecifies the beginning of the default comm ha d if 
itions in the preceding IF and/or ELIF com ue

This command s
none of the cond

and block t
mands is tr

t will be execute
. This is not an 

executable command. 

ENDIF 

Format ENDIF 
Function This command specifies the end of a command block, which begins at the command following 

, ELIF, or ELSE command. This is not an e mmthe matching IF xecutable co and.  
Example IF-Command Structures: 

Commands and 
Structures Description 

IF <condition> 
… 
ENDIF 

Runs the command block between IF and ENDIF when the 
condition is true, otherwise ignores the command block. 

IF <condition> Runs the command block betw ELS

ELSE and ENDIF. 
… 
ELSE 

condition is true, otherwise runs the command block between 

… 
ENDIF 

een IF and E when the 

IF <condition> 
… 

ion_2> 

. 
ELIF <condition_N> 
… 

Runs the command block between IF and the first ELIF and 
ignores all the following commands in the structure when 
condition 1 is true, otherwise e dit uns the 
command block between the first ELIF and the second ELIF and 

otherwise checks condition 3. Repeats the 
same operation until condition N is processed. If none of the 
conditions are true, no command block in this structure is run. 

ELIF <condit
… 
ELIF <condition_3> 
. 

ignores all the following commands in the structure when 
condition 2 is true, 

. 

ENDIF 

xamines con ion 2. R

IF <condition> 
… 
ELIF <condition_2> 

Runs the command block between IF and the first ELIF and 
ignores all the following commands in the structure when 
condition 1 is true, otherwi

… 
ELIF <condition_3> 
. 
. 

ondition_N> 

se examines condition 2. Runs the 
command block between the first ELIF and the second ELIF and 
ignores all the following commands in the structure when 
condition 2 is true, otherwise checks condition 3. Repeats the 
same operation until condition N is processed. Runs the 
command block between ELSE and ENDIF if none of the 
conditions are true. 

ELIF <c
… 
ELSE 
… 
ENDIF 

Note that there can be up to 20 nested IF-command structures. 



4 14  
 

 

14-25 CHAPTER 14   USING MACROS

 

14.4.8. Program Control 

JMP 

Format JMP P1 
Function jumps to the program point specified by label P1. Unconditionally 

P1 (CS) The label of the program point. 
Example 1 IF $U10 == 0 

JMP SKIP /* Skip the command "$U20 = $U10 / 2". */ 
ENDIF 
$U20 = $U10 / 2 
SKIP: 
$U10 = 1 

<label> 

Format P1: 
Function This is not an executable command. The P1 is the label of the program point where it is 

positioned. 
P1 (CS) The character string as the label of the program point. Remember to have the character ':' after 

the label. 
Example 1 IF

ip the co
ENDIF 
$ 10 / 2 
S
$  = 1 

 $U10 == 0 
JMP SKIP /* Sk mmand "$U20 = $U10 / 2" */ 

U20 = $U
KIP: 
U10

JMP == 

Format J  MP(P1,P2 == P3) Data Type U/S/UD/SD/F 
Function Jumps to the program point specified by label P1 when P2 is equal to P3. 

P1 (CS) T  pohe label of the program int. 
P2,P3 (I/E/C/AE) The operands. 

JMP != 

Format JMP(P1,P2 != P3) Data Type U/S/UD/SD/F 
Function Ju he program point specified by label P1 when P2 is not equal to P3. mps to t

P1 (CS) The label of the program point. 
P2,P3 (I/E/C/AE) The perands. o

JMP > 

Format JMP(P1,P2 > P3) Data Type U/S/UD/SD/F 
Function Ju intmps to the program po  specified by label P1 when P2 is greater than P3. 

P1 (CS) The label of the program point. 
P2,P3 (I/E/C/AE) The nds. opera

 
 
 
 



14 
 

14-26 CHAPTER 14   USING MACROS 

 

JMP >= 

Format JMP(P1,P2 >= P3) Data Type U/S/UD/SD/F 
Function Jumps to the program point specified by label P1 when P2 is greater than or equal to P3. 

P1 (CS) The label of the program point. 
P2,P3 (I/E/C/AE) The operands. 

JMP < 

Format JMP(P1,P2 < P3) Data Type U/S/UD/SD/F 
Function ram point specified by label P1 when P2 is less than P3. Jumps to the prog

P1 (CS) el of the program point. The lab
P2,P3 (I/E/C/AE) nds. The opera

JMP <= 

Format JMP(P1,P2 <= P3) Data Type U/S/UD/SD/F 
Function Jumps to the program point specified by label P1 when P2 is less than or equal to P3. 

P1 (CS) gram point. The label of the pro
P2,P3 (I/E/C/AE) The operands. 

JMP & 

Format ,P2 & P3) JMP(P1 Data Type U/UD 
Function ram point specified by label P1 when the result of Bitwise AND between P2 

 is non-zero. 
Jumps to the prog
and P3

P1 (CS) f the program point. The label o
P2,P3 (I/E/C/AE) The operands. 

JMP !& 

Format JMP(P1,!(P2 & P3)) Data Type U/UD 
Function cified by label P1 when the result of Bitwise AND between P2 Jumps to the program point spe

and P3 is zero. 
P1 (CS) The label of the program point. 
P2,P3 (I/E/C/AE) The operands. 

JMP <bit> 

Format JMP(P1,P2) Data Type B 
Function Jumps to the program point specified by label P1 if the condition P2 is true (1/On). 

P1 (CS) The label of the program point. 
P2,P3 (I/E/CE) The operands. 

 



4 14  
 

 

14-27 CHAPTER 14   USING MACROS

 

JMP !<bit> 

Format JMP(P1,!P2) Data Type B 
Function Jumps to the program point specified by label P1 if the condition P2 is false (0/Off). 

P1 (CS) The label of the program point. 
P2,P3 (I/E/CE) The operands. 

CALL 

Format CALL P1 
Function Goes to sub-macro P1.  

P1 (Sub-macro 
name) 

The sub-macro to be called. 

Example 1 CALL CommonFunction_01 /* Go to sub-macro named CommonFuncation_01 */ 

RET 

Format RET 
Function is command can only be used in sub-macros. Returns to the calling macro. Th

FOR  

Format FOR P2 Data Type U 
Function s within the FOR loop by P1 times. A F nc g 

XT commands. There can be up to 20  lo
Runs the command
pair of FOR and NE

OR loop is e
 nested FOR

losed by a matchin
ops. 

P1 (I/C) Total times to run the FOR loop 
Example 1 

nd will be executed 10 times */ 

$U200 = $U200 + 1 /* This command will be executed 120 times */ 
NEXT 

FOR 10 
100 + 1 /* This comma$U100 = $U

FOR 12 

NEXT 

NEXT  

Format NEXT 
Function This command indicates the end of a FOR loop. It is not an executable command. 

Example 1 Example: 
$U1 = 10 

ommand will be executed 10 times. */ 

$U200 + 1 /* This command will be executed 120 times. */ 
NEXT 

NEXT 

$U2 = 12 
FOR $U1 

$U100 = $U100 + 1 /* This c
FOR $U2 

$U200 = 

 



14 
 

14-28 CHAPTER 14   USING MACROS 

 

STOP 

Format STOP 
Function Stops the macro immediately. If the macro is a Cycle macro, it will run again starting from the 

dow is opened again. If the macro is a Main macro, it will 
ommand when restarting the application. 

This command cannot be used in sub-macros. 

first command when the associated win
run again starting from the first c
 

END 

Format END 
Function Indicates the end of macro and stops the macro in the current cycle. It can be put anywhere in a 

macro to stop the macro at any point. If the macro is a cyclic macro, such as the Main macro and 
 from the first 

 
This command cannot be used in sub-macros. 

the Cycle macro, it is stopped just in the current cycle and will be run again starting
command in the next cycle.  

 

14.4.9. peration Timer O

SET_T 

Format SET_T(P1,P2) Da Uta Type  
Function Starts the timer P1 using the timer control block in P2. 

P1 (C) The ID ailable and the IDs are 0 to 7. of the timer. There are 8 timers av
P2 (I) The sta ion of the memory block (or word array) that is used as a Timer Control Block for the 

timer. The structure of the Time
rting locat

r Control Block is shown below: 
Word No. Data Item Description 

0 Type of operation 0: One-shot; 1: Square-wave 
1 Current timer value The timer increases the value of this word by 1 every 

100ms. 
2 Timer limit When the current timer value reaches the timer limit, the 

timer will perform one of the following operations according 
to the type of operation: 
1) If the type of operation is One-shot (0), sets the time-up 

ps itself.
2) If the type of operation is Square-wave (1), toggles the 
time-up flag, resets the current timer value to 0, and 
continues the timing operation.  

flag to 1, resets the current timer value to 0, and sto

3 Time-up flag This word will be set to 0 or 1 when the current timer value is 
equal to the timer limit. 

The timer w  do not use any words in 
the block fo oses. 
A Timer Contr

ill use the associated Timer Control Block as its private memory, so
r other purp

ol Block requires 4 words. 
Example 1 $U100 = 1 of operation is Square-wave. */ 

$U101 itialize the current timer value to 0. */ 
$U102 = 5 /* Timer limit is 0.5 second (5*100ms). */ 
$U103 = 0 /* Initialize the time-up flag to 0. */ 
SET_T(3, $U100) /* Use timer #3 to generate a 1 Hz square wave on $U103.0 */ 

/* Type 
= 0 /* In

 
 
 
 



4 14  
 

 

14-29 CHAPTER 14   USING MACROS

 

STOP_T 

Format STOP_T(P1) Data Type U 
Function Stops the timer P1. 

P1 (C) The ID of the timer.  
Example 1 TOP_T(1) /* Stop timer #1 */ S

WAIT_T 

Format WAIT_T(P1) Data Type U 
Function for the time-up of timer P1. The macro command following this one will not be executed Waits 

until the timer reaches its limit. 
P1 (C) The ID of the timer.  
Example 1 

ent timer value to 0. */ 
 

SET_T(7, $U100) /* Starts timer #7 as a 0.5 second timer. */ 
7) /* Wait 0.5 second */ 

$U100 = 0 /* Type of operation is One-shot. */ 
$U101 = 0 /* Initialize the curr
$U102 = 5 /* Timer limit is 0.5 second (5*100ms). */
$U103 = 0 /* Initialize the time-up flag to 0. */ 

WAIT_T(
 
 

1  K ation 

K

4.4.10. eypad Oper

B_MCR 

Format KB_MCR(P1) Data Type U 
Function t by the associated keypad button. This 

an ed only in  run by a keypad button. A keypad button runs the 
ied ress d in a keypad button macro to 

cept o inp

Accepts or ignores the character/command currently inpu
comm

ecif
d must be us  a macro that is

sp
ac

 macro when it is p
r ignore the current 

ed. You can use this comman
ut of that button. 

P1 (I/C) e valu  h ad button 
input. If the value is 0, the input cepted; Otherwise the input will be ignored. 
Th e or the location that olds the value to determine the acceptance of the keyp

 will be ac
Example 1 B_MCR  the currenK (1) /* Ignore t input */ 

KPD_TEXT 

Format KPD_TEXT(P1) Data Type U  
Function The memory block (or byte arra to be 

used to initialize the keypad dis
y) that contains the null-terminated ASCII character string 
play and buffer. 

P1 (I) e mem yte arra
d to initialize the keypad dis

Th
use

ory block (or b y) that contains the null-terminated ASCII character string to be 
play and buffer. 

Example 1 
 Initialize the keypad display and buffer using the string "initial text". */ 

$U100 = "initial text" 
KPD_TEXT($U100) /*

 



14 
 

14-30 CHAPTER 14   USING MACROS 

4.4.11. Recipe Operation 

 

 

1

RB2ROM

Format P1 = RB2ROM(P2 ) Data Type U 
Function Saves the data of recipe block P2 to the flash ROM and saves the completion code in P1. 

P1 (I) The word to receive the completion code. If the completion code is 0, the operation succeeded; 
otherwise the operation failed. 

P2 (I/C) The ID of the recipe block to be saved. The option "Need space in flash ROM to save backup" 
must be selected for the recipe block. 

Example 1 OM(3) /* Save recipe block #3 to the flas$U10 = RB2R h ROM. */ 

ROM2RB 

Format P1 = ROM2RB(P2 ) Data Type U 
Function Restores the data of recipe block P2 from the flash ROM and saves the completion code in P1. 

P1 (I) letion code is 0, the operation succeeded; The word to receive the completion code. If the comp
otherwise the operation failed. 

P2 (I/C) ace in flash ROM to save backup" The ID of the recipe block to be restored. The option "Need sp
must be selected for the recipe block. 

Example 1 cipe block #3 from the flash ROM. */ $U10 = ROM2RB(3) /* Restore re

REF_RCP_OBJ 

Format REF_RCP_OBJ(P1 ) Data Type U 
Function Refreshes the recipe objects associated with the specified recipe block P1. The recipe objects 

include recipe selectors and recipe tables. You can use this command to update the display of 
cts after changing the data of a recipe b cro gram. associated obje lock in a ma pro

P1 (I/C) The ID of the associated recipe block. 
Example 1 REF_RCP_OBJ(3) /* Refresh the recipe objects associated with recipe block #3 */ 

 



4 14  
 

 

14-31 CHAPTER 14   USING MACROS

 

14.4.12. Communication Operation 

EN_LINK 

Format EN_LINK(P1,P2,P3) Data Type U 
Function Enables communication link P1 or sub-link P2 of communication link P1 when P3 is 1. Disables 

the specified communication link or sub-link when P3 is 0. 

P1 (I/C) ion link to be enabled or disabled. The number of the communicat
P2 (I/C) The node address of the sub-link to be enabled or disabled. If the specified communication link 

has no sub-link, this parameter is ignored. If the specified communication link has sub-links and 
. you want to enable or disable the link itself, set this parameter to 0

P3 (I/C) To enable the specified communication link or sub-link, set this parameter to 1. To disable the 
specified communication link or sub-link, set this parameter to 0.  

Example 1 , 0) /* Disable the sub-link, whose node s mmunication ENABLE_LINK(1, 20
link 1. */ 

address i  20, of co

L S INK_ST

Format P1 = LINK_STS(P2,P3 ) Data Type U 
Function Gets the status of communication link P2 or sub-link P3 of communication link P2 and saves the 

result in P1. 
P1 (I/C) The word to receive the status of the specified communication link or sub-link. The status is a 

16-bit value. The following table lists the meaning of each status value. 
Status Value Meaning Status Value Meaning 
0 OK 14 vic sy De e bu
1 Overrun error 15 Unknown error 
2 Break error 16 Link disabled 
3 Parity error 17 Initialization failure 
4 Framing error 18 Failed to send data 
5 No response 19 Failed to receive data 
6 Unrecognized 

response 
20 Failed to open connection 

7 Timeout 21 Connection not ready 
8 Inactive CTS 22 Invalid sub-link 
9 Checksum error 23 Invalid COM port 
10 Command rejected 24 Error 
11 Invalid address 255 Condition uncertain 
12 Invalid range 65535 Failed to get status 
13 Invalid request    

P2 (I/C) The number of the communication link. 
P3 (I/C) The node address of the sub-link. If the specified communication link has no sub-link, this 

parameter is ignored. 
Example 1 $U100 = LINK_STS(2, 0) /* Get the status of communication link 2 and save it to $U100. */ 
Example 2 $U12 = LINK_STS(1, 128) /* Get the status of the sub-link, whose node address is 128, of 

communication link 1 and save it to $U12. */ 
 



14 
 

14-32 CHAPTER 14   USING MACROS 

 

14.4.13. System Service 

GET_RTC 

Format GET_RTC(P1 ) Data Type U 
Function Gets the data of the real time clock and saves the result in P1. 

P1 (I)  RTC data block to receive the 
w: 

The starting location of the memory block that is used as an
operation result. The structure of the RTC data block is shown belo

Data Item Data Type/Size Word No. 
Second 16-bit Unsigned Integer 0 
Minute 16-bit Unsigned Integer 1 
Hour 16-bit Unsigned Integer 2 
RTC adjustment 16-bit Signed Integer 3 
Day 16-bit Unsigned Integer 4 
Month 16-bit Unsigned Integer 5 
Year 16-bit Unsigned Integer 6 
Day of week 16-bit Unsigned Integer 7 

Second: 0-59; Minute: 0-59; Hour: 0-23; RTC adjustment: -63-63; Day: 1-31; Month: 1-12; Year: 
0(2000)-99(2099); Day of week: 0(Sunday)-6(Saturday) 
An RTC data block requires 8 words. 

Example 1  be in $U100 and the 
da e in   
GET_RTC($U100) /* Get the data of the real time clock. The second will

y-of-week will b  $U107. */

SET_RTC 

Format SET_RTC(P1 ) Data Type U 
Function Sets the real time clo data in P1. ck using the 

P1 (I) The starting location of the memory block that sed as an RTC  the new 
settings for the real time cl p  GET_RTC

 is u  data block to contain
ock. See the descri tion of  to kno

RTC data block. 
w the structure of the 

Example 1 $U 0 = 0 // Second
$U101 = 30 // Minute
$U 2 = 8 // Hour 
$U 3 = 0 // Adjustm
$U 4 = 1 // Day 
$U  = 7 // July 
$U  = 10 // Year 2
$U1  = 4 // Thursday
SET_RTC($U100) /* Set the real time clock to  July 1st 20

10  
 

10
10 ent 
10
105
106 010 
07  

 8:30:00 10 Thursday */ 

SYS 

Format SYS(P1,P2,P3) Data Type U 
Function ice P1 with the arguments P2 and P3. This command is reserved for Requests system serv

system use. 
P1 (I) The code of the system service. 
P2,P3 (I/C) The arguments of the system service. 

 



4 14  
 

 

14-33 CHAPTER 14   USING MACROS

 

14.4.14. Screen Operation 

OPEN_WS 

Format OPEN_WS P1 Data Type U 
Function The number of the window screen to be opened. This command will not open the specified 

nd 

mmand, that screen 
ca ed or switched by

screen if it is a normal screen or menu screen. The macro commands following this comma
will not be executed until the opened window screen is closed. Also, when a screen's Cycle 
macro is waiting for the closing of the window screen opened by this co

nnot be clos  any means. 
P1 (I/C) Th r of the window scre reen number indicates the normal 

sc enu screen, no scre
e numbe en to be opened. If the sc
reen or m en will be opened. 

CLOSE_WS 

Format CLOSE_WS 
Function Cl  window screen that w command OPEN_ S. oses the as opened by the macro W

 



14 
 

14-34 CHAPTER 14   USING MACROS 

 
 

14.4.15. File Operation 

FILE_IO 

Format P1 = FILE_IO(P2,P3 ) Data Type U 
Function Performs de 

in P1. 
 the file operation specified by P2 and P3 using default filename and saves the completion co

P1 (I) The word
succeede

 to receive the completion code of the operation. If the completion code is 0, the operation 
d; otherwise the operation failed. 

P2,P3 
(I/C) 

P2 specifie es 
how to se

s the type of file operation. P3 specifies the ID of the data source. The following table describ
t P2 and P3. 

File Operation P2 P3 Default Filename Format 
Save Logged Data (.txt) 1 DL<ID>_<Date>_<Time>.txt 
Save Logge 14 

Data logger ID (0-15) 
 DL<ID>_<Date>_<Time>.csv d Data (.csv) 

Save Logge .txt d Alarms (.txt) 2 AL_<Date>_<Time>
Save Logge .csv d Alarms (.csv) 15 

0 
AL_<Date>_<Time>

Save Alarm Counts (.txt) 3 AC_<Date>_<Time>.txt 
Save Alarm Counts (.csv) 16 

0 
AC_<Date>_<Time>.csv 

Save Recipe Data (.txt) 4 RB<ID>.txt 
Save Recipe Data (.csv) 17 RB<ID>.csv 
Save Recipe Data (.prd) 5 

Recipe block ID 
(0-15) 
 

RB<ID>.prd 
Print Screen to File 
(256-color .bmp) 

6 S<ID>_<Date>_<Time>.bmp 

Print Screen to File 
(64K-color .bmp) 

7 

Screen number 
(1-7999) 

S<ID>_<Date>_<Time>.bmp 

Save Logged Operations (.txt) 9 0 OL_<Date>_<Time>.txt 
Save Logged Operations (.csv) 18 0 OL_<Date>_<Time>.csv 
Save Logged Data (.ldf) 10 Data logger ID (0-15) DL<ID>_<Date>_<Time>.ldf 
Take Picture (.bmp) 12 CAM<ID>_<Date>_<Time>.bmp
Take Picture (.jpg) 13 

USB camera ID (0-3) 
CAM<ID>_<Date>_<Time>.jpg 

 
Note: 
<ID>: ID of the data logger, ID of the recipe block, ID of the USB camera, or number of the screen 
<Date>: The date when saving the data.  <Time>: The time when saving the data. 
You can select the formats of <Date> and <Time> on the Custom page in the General Setup dialog box. 

 
 
 
 



4 14  
 

 

14-35 CHAPTER 14   USING MACROS

 

FILE_IO_N 

Format P1 = FILE_IO_N(P2,P3,P4) Data Type U 
Function file operation specified by P2 and P3 using filename  and saves the completion Performs the 

code in P1. 
P4

P1 (I) The word to receive the completion code of the operation. If the completion code is 0, the 
operation succeeded; otherwise the operation failed. 

P2,P3 (I/C) table P2 specifies the type of file operation. P3 specifies the ID of the data source. The following 
describes how to set P2 and P3. 

File Operation P2 P3 
Save Logged Data (.csv/.txt) 31 Data logger ID (0-15) 
Save Logged Alarms (.txt 0 ) 32 
Save Alarm Counts (.txt) 0 33 
Save Recipe Data (.csv/.t 34 Rxt) ecipe block ID (0-15) 
Save Recipe Data (.prd) 35 Recipe block ID (0-15) 
Print Screen to File (256- r .bmp) 36 Scolo creen number (1-7999) 
Print Screen to File (64K- or .bm 37 Scol p) creen number (1-7999) 
Save Logged Operations ) 39 0 (.txt
Save Logged Data (.ldf) D  (0-15) 40 ata logger ID
Take Picture (.bmp) 42 U  (0-3) SB camera ID
Take Picture (.jpg) 43 U  (0-3) SB camera ID 

P4 (I) y that contains e spe  full path lid 
athname with ASCII cha y. The character string must be null terminated 

racter occupies one byte. The maximum length ers 
e full pathname must already exist or the file operation will fail. 

The byte arra
Windows p

 th cified filename or
racters onl

name. The name must be a va

and each cha
stated in th

 of the string is 127. All the fold

MKDIR 

Format  P1 = MKDIR(P2 )
Function  directory wit  sp veCreates a new h the ecified name P2 and sa s the result to P1. 

P1 (I) receive the completion code of the operation. If t
operation succeeded; otherwise the operation failed. 
The word to he completion code is 0, the 

P2 (I) The byte array that contains the name of the new directory. The name must be a valid directory 
name with or without pathname and has only ASCII characters in it.  

 



14 
 

14-36 CHAPTER 14   USING MACROS 

 

 

OPEN_FILE

Format P1 = OPEN_FILE(P2,P3 ) Data Type  U
Function Creates or opens a file. 

P1 (I) location of the memory block that is used as a File Information Block to receive the The starting 
operation result. The structure of the File Information Block is shown below: 

Data Item Data Type/Size Word No. 
File handle 32-bit Unsigned Integer 0 and 1 
File size 32 bit Unsigned Integer 2 and 3 
F Byte array with 81 elements 4 through 44 ilename   

Th ration failed. 
Th y created file. 
Th ated character string.  maximum allowable size is 80. It is set 
whe
A s 45 words. 

e file handle is zero if the ope
e file size is zero for a newl
e filename is a null-termin  The

n the file is successfully opened. 
 File Information Block require

P2 (I) Th e or the fu thnam  The name 
is SCII cha rs in 

e byte array that contains the filenam
 a null-terminated string and has only A

ll pa e of the file to be opened.
it. racte

P3 (I/C) S . pecifies the purpose of opening the file
Purpose Value 
Read 0 
Write 1 
Append 3 
Read CSV File 5  

Example 1 
ion. The double word 

$U100 will contain the file handle. The double word $U102 will contain the file size. The byte 
array $U104 will contain the filename. */ 

$U10 = “test.txt” 
$U100 = OPEN_FILE($U10, 0) /* Open the file “test.txt” for the read operat

R E EAD_FIL

Format P1 = READ_FILE(P2,P3,P4 ) Data Type U 
Function Reads P4 bytes from file P2 to buffer P3 and saves the result in P1. 

P1 (I) The word to receive the number of bytes that were actually read. If the operation failed, the 
number is 65535 (0xFFFF). 

P2 (I) The file handle of the file to be read. 
P3 (I) The memory block to receive the data read from the file. 
P4 (I/C) Number of bytes to be read from the file. The maximum you can specify is 32767(0x7FFF). 
Example 1 $U200 = READ_FILE($U100,$U150,20) /* Read 20 bytes from the file specified by the file 

handle in $U100 and saves the data in the memory block starting from $U150. */ 

 



4 14  
 

 

14-37 CHAPTER 14   USING MACROS

 

WRITE_FILE 

Format P1 = WRITE_FILE(P2,P3,P4 ) D Uata Type  
Function Writes P4 bytes of data in P3 to file P2 and saves the completion code in P1. 

P1 (I) The word to receive the completion code of the operation. If the completion code is 0, the 
operation succeeded; otherwise the operation failed. 

P2 (I) The file handle of the file. 
P3 (I) T lock (or byte arra  be written tohe memory b y) that stores the data to  the file. 
P4 (I/C) Number of bytes to be written to the file. 
Example 1 data sto ory block 

 file handle in $U100. */ 
$ E_FILE($U100,$
starting from $U150 to the file specified by the

U200=WRIT U150,30) /* Write 30 bytes of red in the mem

CLOSE_FILE 

Format P1 = CLOSE_FILE(P2,P3 ) Data Type U 
Function Closes an opened file P2 and saves the completion code in P1. 

P1 (I) The word to receive the completion code o
operation succeeded; otherwise the opera

f the operation. If the completion code is 0, the 
tion failed. 

P2 (I) The file handle of the file to be closed. 
Example 1 $U2 SE_FILE($U100) /* Close the file specified by the file handle in $U100. */ 00=CLO

DELETE_FILE 

Format P1 = DELETE_FILE(P2 ) Data Type U 
Function Deletes a file named P2 and saves the completion code in P1. 

P1 (I) The word to receive the completion code of the operation. If the completion code is 0, the 
operation succeeded; otherwise the operation failed. 

P2 (I) The byte array that contains the filename or the full pathname of the file to be deleted. The name 
is a null-terminated string and has only ASCII characters in it. 

Example 1 
/* Delete the file “test.txt”

$U10 = “test.txt” 
$U200 = DELETE_FILE($U10) . */ 

R E_FILE ENAM

Format P1 = RENAME_FILE(P2,P3 ) Data Type U 
Function etion code in P1. Renames file P2 with new name P3 and saves the compl

P1 (I) The word to receive the completion code of the operation. If the completion code is 0, the 
operation succeeded; otherwise the operation failed. 

P2 (I) The byte array that contains the filename or the full pathname of the file to be renamed. The 
name is a null-terminated string and has only ASCII characters in it. 

P3 (I) The byte array that contains the new filename. The name is a null-terminated string and has only 
ASCII characters in it. 

Example 1 $U10 = “test.txt” 
$U50 = “new.txt” 
$U200 = RENAME_FILE($U10, $U50) /* Rename the file “test.txt” to “new.txt”. */ 

 



14 
 

14-38 CHAPTER 14   USING MACROS 

O 

 

GET_VOL_INF

Format P1 = GET_VOL_INFO(P2,P3 ) Data Type U 
Function Gets the information of volume P2 and saves the result in P3. The completion code is saved in 

P1. 
P1 (I) ion. If the completion code is 0, the The word to receive the completion code of the operat

rwise the operation failed. operation succeeded; othe
P2 (I/C) The drive ID. 

ID Drive 
0 Current drive 
3 Drive C 
4 Drive D 
5 Drive E  

P3 (I) The starting location of the memory block that is used as form ion Block to receive 
own below: 

 a Volume In
is sh

at
the operation result. The structure of the Volume Information Block 

Data Item Data Type/Size Word No. 
Volume name Byte array with 32 elements 0 through 15 
Volume size 32-bit Unsigned Integer 16 and 17 
Free size 32-bit Unsigned Integer 18 and 19 
Drive ID 16-bit Unsigned Integer 20 

The volume name is a null-terminated character string. The maximum allowable size is 31 
characters. 

e and the unit of free size are 1Both the unit of volume siz 024 bytes. 
A Volume Information Block requires 21 words. 

Example 1 
6 and 

 and $U19. The ID of the current drive will 

$U100 = GET_VOL_INFO(0, $U0) /* Get the volume information of the current drive. The 
volume name will be stored in $U0 through $U15. The size of the drive will be stored in $U1
$U17. The free size of the drive will be stored in $U18
be stored in $U20. */ 

R  EAD_CSV 

Format P1 = READ_CSV(P2,P3,P4 ) Data Type S/U/SD/UD/F 
Function Reads the data in the field of row P3 and column P4 of the CSV file P2 and saves the result in P1.

P1（I） 

The word location to receive the value of the specified field. The data type selected for this 
s the data type of the spe r th peration may fail. If 

he operation failed or 
tion failed. 

command should be the same a cified field, o e o
the operation fails for any reason, no value will be written to P1. To know if t
not, check the word $S522. When the value of $S522 is non-zero, the opera

P2（I） se of 
Rea
The file handle of the file to be read. The file must be a CSV file and is opened with the purpo

d CSV File. The delimiter must be TAB. 

P3（I/C） The row number of the field to be read. The row counts from 0. 

P4（I/C） The column number of the field to be read. The column counts from 0. 

Example 1 ILE($U10,5) /* Open the file "test.csv" for the READ CSV FILE operation. */ 
 of row 2 and 

column 3 and save the result in $U200 and $U201. */ 

$U10 = "test.csv" 
$U100 = OPEN_F
$U200 = READ_CSV($U100,2,3)  (F) /* Read the floating point number in the field

    
 
 
 
 
 



4 14  
 

 

14-39 

 

READ_CSV_STR  

Format P1 = READ_CSV_STR (P2,P3,P4 ) 

Function lt in Reads the string in the field of row P3 and column P4 of the CSV file P2 and saves the resu
P1. 

P1（I） 

 to receive the string in the specified field. The maximal string length that this 
c 28. If the operation fails for any reason, no value will be written to P1. To 
kn f the operation failed or not, ch rd $S522. When the value of $S522 is non-zero, 
the operation failed. 

The byte array
o and can handle is 1mm

ow i eck the wo

P2（I） The file handle of the file to The file must be a CSV file and is opened with the purpose of 
Re  CSV File. The delimit e TAB. 

 be read. 
ad er must b

P3（I/C） row number of the field to be read. The row counts from 0. The 

P4（I/C） The column number of the field to be read. The column counts from 0. 

Example 1 

$U sv" 
$U ILE($U10 or the READ CSV FILE operation. */ 
$U CSV_STR tring in the field of olumn 4 and 
sa lt in the byte a

10 = "test.c
100 = OPEN_F ,5) /* Open the file "test.csv" f
200 = READ_ ($U100,2,4) /* Read the s  row 2 and c
ve the resu rray starting at $U200. */ 

CHAPTER 14   USING MACROS



14 
 

14-40 CHAPTER 14   USING MACROS 

14.4.16. Comparison 

== 

 

Format P1 = P2 == P3 Data Type U/S/UD/SD/F/B 
Function Sets bit P1 to 1 if P2 is equal to P3, otherwise sets P1 to 0.  

P1 (I/E) The bit location to save the result. 
P2,P3 (I/E/C/AE) The operands. 
Example 1 $U3.3 = ($U10 + $U20) == 25.75 (F)  

!= 

Format P1 = P2 != P3 Data Type U/S/UD/SD/F/B 
Function Sets bit P1 to 1 if P2 is not equal to P3, otherwise sets P1 to 0.  

P1 (I/E) The bit location to save the result. 
P2,P3 (I/E/C/AE) The operands. 
Example 1 ) != -700 (S)  $U3.3 = ($U10 + $U20

> 

Format P1 = P2 > P3 Data Type U/S/UD/SD/F 
Function Sets bit P1 to 1 if P2 is greater than P3, otherwise sets P1 to 0.  

P1 (I/E) The bit location to save the result. 
P2,P3 (I/E/C/AE) The operands. 
Example 1 $U3.3 = ($U10 + $U20) > $U30 (UD)  

>= 

Format P1 = P2 >= P3 Data Type U/S/UD/SD/F 
Function Sets bit P1 to 1 if P2 is greater than or equal to P3, otherwise sets P1 to 0. 

P1 (I/E) The bit location to save the result. 
P2,P3 (I/E/C/AE) The operands. 
Example 1 $U3.3 = ($U10 + $U20) >= 25.75 (F)  

< 

Format P1 = P2 < P3 Data Type U/S/UD/SD/F 
Function Sets bit P1 to 1 if P2 is less than P3, otherwise sets P1 to 0.  

P1 (I/E) The bit location to save the result. 
P2,P3 (I/E/C/AE) The operands. 
Example 1 $U3.3 = ($U10 + $U20) < 25.75 (F)  

<= 

Format P1 = P2 <= P3 Data Type U/S/UD/SD/F 
Function Sets bit P1 to 1 if P2 is less than or equal to P3, otherwise sets P1 to 0.  

P1 (I/E) The bit location to save the result. 
P2,P3 (I/E/C/AE) The operands. 
Example 1 $U3.3 = ($U10 + $U20) <= 25.75 (F)  

 
 



4 14  
 

 

14-41 CHAPTER 14   USING MACROS

 

STRCPY 

14.4.17. String Operation 

Format STRCPY(P1, P2 ) 
Function Copies the string in P2 to P1. 

P1 (I) T at receives a copy of the string in P2. The byte array must be large enough to 
h d the null terminator. 

he byte array th
old the string an

P2 (I) T ins the null-terminated string to be copied. he source, i.e. the byte array that conta
Example 1 $U10 = “ABCDE” 

STRCPY($U20, $U10) 
A nd STRCPY is executed, the byte array $  th nd 
t

fter the comma U20 contains e string “ABCDE” a
he memory content is like the following: 

Word Low Byte High Byte 
$U20 'A' 'B' 
$U21 'C' 'D' 
$U22 'E' 0  

Example 2 $U10 = “12” 
S $U10) 
A e 
m

TRCPY($U20, 
fter the command STRCPY is executed, the byte array $U20 cont
emory content is like the following: 

ains the string “12” and th

Word Low Byte High Byte 
$U20 '1' '2' 
$U21 0 Undefined  

STRCAT 

Format STRCAT(P1, P2 ) 
Function Appends string in P2 to string in P1. 

P1 (I) The byte arra inated string to which the command appends P2. The byte 
a ge enough to hold both strings and the null terminator. 

y that contain
rray must be lar

s a null-term

P2 (I) T ring to be appended to the string in P1. he byte array that contains a null-terminated st
Example 1 $U10 = “ABC” 

$U20 = “12345” 
, $U20) /* After this command is executed, the byte array $STRCAT($U10 U10 contains 

“ABC12345” */ 
Example 2 

STRCAT($U100, $U140) /* After this command is executed, the byte array $U100 contains 
“C:\MyFolder\Test.txt” */ 

$U100 = “C:\MyFolder\” 
$U130 = “Test” 
$U140 = “.txt“ 
STRCAT($U100, $U130) 

 



14 
 

14-42 CHAPTER 14   USING MACROS 

STRLEN 

 

Format P1 = STRLEN(P2 ) 
Function Gets the length of string P2 and saves the result in P1. 

P1 (I) The word to receive the result. 
P2 (I) The byte array that stores the null-terminated string. 
Example 1 $U10 = “ABC” 

$U20 = STRLEN($U10) /* After this command is executed, the value of $U20 is 3. */ 

STRCMP 

Format P1 = STRCMP(P2,P3 ) 
Function Compares strings P2 and P3 lexicographically and saves a value indicating their relationship in 

P1. 

P1 (I) The value of comparison res
 Descr n 

ult. 
Value iptio
0 P2 and  are identical.  P3
1 P2 is g ter than P3. rea
0xFFFF P2 is less than P3. 

  
P2,P3 (I) The byte array that contains a null-terminated string to compare. 
Example 1 $U BC” 

$U2 bc” 
$U TRCMP($U10, $U2 * After this command is ex ted, $U30 is 0xFFFF*/ 

10 = “A
0 = “a

30 = S 0) / ecu
Example 2 YZ” 

$U20 = “ABC” 
$U30 = STRCMP($U10, $U20) /* After this command is executed, $U30 is 1*/ 

$U10 = “X

Example 3 

r this command is executed, $U30 is 0*/ 

$U10 = “ABC” 
$U20 = “ABC” 
$U30 = STRCMP($U10, $U20) /* Afte

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 



4 14  
 

 

14-43 CHAPTER 14   USING MACROS

 

STRICMP 

Format P1 = STRICMP(P2,P3 ) 
Function Compares lowercase version of strings P2 and P3 lexicographically and saves a value indicating 

their relationship in P1. 

P1 (I) The value of comparison result. 
Value Description 

0 P2 and P3 are identical. 
1 P2 is greater than P3. 
0xFFFF P2 is less than P3. 

  
P2,P3 (I) The byte array that contains a null-terminated string to compare. 
Example 1  = “ABC” 

$U RICMP($U10, $U20) /* After this comman , $U30 is 0*/ 

$U10
$U20 = “abc” 

30 = ST d is executed
Example 2 $U “XYZ” 

$U “ABC” 
$U ICMP($U10, $U20) /* After this comman  is 1*/ 

10 = 
20 = 
30 = STR d is executed, $U30

Example 3 $U  = “ABC” 
$U  = “ABC” 

 $U30 is 0xFFFF*/ 

10
20

$U30 = STRCMP($U10, $U20) /* After this command is executed,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



14 
 

14-44 CHAPTER 14   USING MACROS 

STRNCMP 

 

Format P1 = STRNCMP(P2,P3,P4 ) 
Function res, at most, the first  P4 characters in strings P2 and P3 and saves a Lexicographically compa

value indicating the relationship between the substrings in P1. 

P1 (I)  result. 
Description 

The value of comparison
Value 
0 P nd .P3's substring are identical 2's substring a
1 P P3's substring . 2's substring is greater than 
0xFFFF P n P3's substring . 2's substring is less tha

Note: The comparison ends if a terminating null c  either string before P4 
aracters are compared. If the strings are equal when a terminating null character is reached in  

g is less.  

d '`') will evaluate as less than 
aracter. 

haracter is reached in
ch
either string before P4 characters are compared, the shorter strin

m 91 to 96 in the ASCII table ('[', '\', ']', '^', '_', anThe characters fro
any alphabetic ch

P2,P3 (I) The byte array that contains a null-terminated string to compare. 
P4 (I/C) The number of characters to compare. 
Example 1 $U10 = “XYZ” 

$U20 = “XYZAB” 
($U10, $U20,4) /* After this command is executed, $U30 is 0$U30 = STRNCMP xFFFF*/ 

Example 2 $U10 = “ABZ” 
$U20 = “ABC” 
$U30 = STRNCMP($U10, $U20,2) /* After this command is executed, $U30 is 0*/ 

Example 3 $U10 = “AXC” 
$U20 = “ABC” 
$U30 = STRNCMP($U10, $U20,3) /* After this command is executed, $U30 is 1*/ 
$U30 = STRCMP($U10, $U20) /* After this command is executed, $U30 is 0xFFFF*/ 

STRCHR 

Format P1 = STRCHR(P2,P3 ) 
Function Finds the first occurrence of a character P3 in a string P2 and saves a search result in value 

indicating the position of the found character in P1. 
P1 (I) The value of search result. If the character P3 is not found in P2, the result value is 

0xFFFF.Otherwise, the result value is the index to the first occurrence of character P3 in a string 
P2. 

P2 (I) The byte array that contains a null-terminated source string. 
P3 (I/C) The byte that contains a character code to be located. 
Example 1 $U10 = “The quick brown dog jumps over the lazy fox.” 

$U20 = 0x72 /* The ASCII code of character 'r' */ 
$U30 = STRCHR($U10, $U20) /* After this command is executed, $U30 is 11*/ 

 
 
 
 
 
 
 
 
 
 
 



4 14  
 

 

14-45 CHAPTER 14   USING MACROS

 

NUM2STR 

Format P1 = NUM2STR(P2,P3 ) Data Type U/UD 
Function Converts the number in P2 to a string with P3 characters and saves the result in P1. 

P1 (I) The byte array that stores the result. 
P2 (I/C) holds the number to be converted. The number or the location that 
P3 (I/C) s the exact number of characters that th  have. If the number of digits of P2 

P3, the result is padded on the left w
 the higher digits are truncated. If P3 is 0, the

Specifie e result should
is less than ith zeros. If the number of digits of P2 exceeds 
P3, re is no limitation on the length of the result. 

Example 1 3 $U120 = 12
$U100 = NUM2STR($U120, 0) (U) /* After this command is executed, the byte array $U100 
contains “123”. */ 

Example 2 $U120 = 1234567 (UD) 
$U100 = NUM2STR($U120, 10) (UD) /* After this command is executed, the byte array $U100 
contains “0001234567”. */ 

Example 3 
After this command is executed, the byte array $U100 

$U120 = 1234567 (UD) 
$U100 = NUM2STR($U120, 5) (UD) /* 
contains “34567”. */ 

TIME2STR 

Format P1 = TIME2STR(P2 ) Data Type U 
Function Converts the c

in P1. 
urrent system time to a string using the format specified by P2 and saves the result 

P1 (I) The byte array that stores the result. 
P2 (I/C) Specifies the desired conversion format.  

Format P2 Value Remark 
hhmmss 0 hh: hour(00-23); mm: minute(00-59); ss: second(00-59) 
hhmm 1 hh, mm: same as above  

Example 1 $U10 = TIME2STR(0) /* Assume that the current system time is 12:30:59. After this command is 
 $U10 contains “123059”. */ executed, the byte array

DATE2STR 

Format P1 = DATE2STR(P2 ) Data Type U 
Function 

. 
Converts the current system date to a string using the format specified by P2 and saves the result 
in P1

P1 (I) The byte array that stores the result. 
P2 (I/C) Specifies the desired conversion format.  

Format P2 Value Remark 
YYMMDD 0 YY: year (00-99); MM: month(01-12); DD: day(01-31) 
YYMM 1 YY, MM: same as above 
YYMMMDD 2 YY: year (00-99); MMM: month(JAN-DEC); DD: day(01-31) 
YYMMM 3 YY, MMM: same as above  

Example 1 $U10 = DATE2STR(0) /* Assume that the current system date is December 7, 2008. After this 
command is executed, the byte array $U10 contains “081207”. */ 

Example 2 $U20 = DATE2STR(3) /* Assume that the current system date is December 31, 2008. After this 
command is executed, the byte array $U20 contains “08DEC”. */ 

 



14 
 

14-46 CHAPTER 14   USING MACROS 

TD2STR 

 

Format P1 = TD2STR(P2 )  Data Type U 
Function m time and date to a string ma ied by P2 and saves Converts the current syste using the for t specif

the result in P1. 
P1 (I) The byte array that stores the result. 
P2 (I/C) Specifies the desired conversion format.  

Format P2 
Value Remark 

YYMMDD_hhmmss 0 YY: year (00-99); MM: month(01-12); DD: day(01-31) 
hh: hour(00-23); mm: minute(00-59) ; ss: second(00-59) 

YYMMMDD_hhmmss 1 YY, DD, hh, mm, ss: same as above 
MMM: month(JAN-DEC) 

YYMMDD_hhmm 2 YY, DD, hh, mm: same as above; MM: month(01-12) 
YYMMMDD_hhmm 3 YY, DD, hh, mm: same as above;  

MMM: month(JAN-DEC)  
Example 1 nt 

 

$U10 = TD2STR(0) /* Assume that the current system date is December 7, 2008 and the curre
system time is 15:18:30. After this command is executed, the byte array $U10 contains 
“081207_151830". */

Example 2 $U20 = TD2STR(3) /* Assume that the current system date is December 31, 2008 and the current 
system time is 13:30:00. After this command is executed, the byte array $U20 contains 
“08DEC31_1330”. */ 

I2A 

Format P1 = I2A(P2,P3 ) Data Type U/S/UD/SD 
Function ng and saves the result in P1. The string is generated 

according to the format specified d P4. 
Converts the integer number in P2 to a stri

 by P3 an

P1 (I) The byte array that stores the result. The result is a null terminated string. 
P2 (I/C) er num  or the locati umber to be converted. The integ ber on that holds the integer n
P3 (I/C) Specifies the maximum number of digits the string can have. 
P4 (I/C) . A decimal point is inserted to the left of the 

nth digit when P4 is n. No decimal point is inserted when P4 is 0. 
Specifies where to insert a decimal point in the string

Example 1 $U120 = 123 
 0) /* After this command is execute rray 100 contains $U100 = I2A($U120, 5, d, the byte a  $U

“123”. */ 
Example 2 $U120 = 1234567 (UD) 

$U100 = I2A($U120, 6, 2) (UD) /* Afte
“2345.67”. */ 

r this command is executed, the byte array $U100 contains 

Example 3 
$U A($U1 D) s command is executed, the byte array $U100 contains 
“-

$U120 = -12345 (S) 
100 = I2 20, 5, 1) (U /* After thi

1234.5”. */ 
 
 
 
 
 
 
 
 
 
 
 



4 14  
 

 

14-47 CHAPTER 14   USING MACROS

 

A2I 

Format P1 = A2I(P2,P3,P4 ) Data /S/U SD  Type U D/
Function Converts the string P2 to an integer value and saves the result in P1. 

P1 (I)  stores the result. The result is 0 when there is any conversion error. The location that
P2 (I) The byte array that holds the string to be converted. 
P3 (I/C) Specifies the length of the string. It is allowed to specify 0 for P3. When P3 is 0, the string must be 

a null terminated string. 
P4 (I/C) Specifie ctional digits in the strins how many fra g are to be converted. 
Example 1 $U1

$ ) fter thi ord $U100 is 123. */ 
20 = “123” 

U100 = A2I($U120, 0, 0 /* A s command is executed, the value in w
Example 2 $U120 = “1234567” 

$ 6, 0) ) /* Af  
$

U100 = A2I($U120, 
U100 is 123456. */ 

(UD ter this command is executed, the value in double word

Example 3 $
U100 = A2I($U120, 0, 2) (S) /* Afte d, the value in word $U100 is 
U120 = “-123.45” 

$ r this command is execute
-12345. */ 

F2A 

Format P1 = F2A(P2,P3 ) Data Type F 
Function point number in P2 to a string and saves the result in P1. The string is 

generated according to the format specified by P3 and P4. 
Converts the floating 

P1 (I) The byte array that stores the result. The result is a null terminated string. 
P2 (I/C) The floating point number or the location that holds the t n converted.  floating poin umber to be 
P3 (I/C) Specifies the number of integral digits the string can have. 
P4 (I/C)  can have. Specifies the number of fractional digits the string
Example 1 

 contains 
$U120 = 123.45 (F) 
$U100 = F2A($U120, 5, 2) /* After this command is executed, the byte array $U100
“123.45”. */ 

Example 2 $U120 = 1234 (F) 
$U100 = F2A($U120, 6, 2) (UD) /* After this command is executed, the byte array $U100 contains 
“1234.00”. */ 

Example 3 $U120 = -1234.5 (S) 
$U100 = F2A($U120, 5, 1) (UD) /* After this command is executed, the byte array $U100 cont
“-1234.5”

ains 
. */ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



14 
 

14-48 CHAPTER 14   USING MACROS 

A2F 

 

Format P1 = A2F(P2,P3 ) Data Type F 
Function  to a floating point number and s ultConverts the string P2 aves the res  in P1. 

P1 (I) The location that stores the result. The result is 0 when there is any conversion error. 
P2 (I) The byte array that holds the string to be converted. 
P3 (I/C) fy 0 for P3. When P3 is 0, the string must be Specifies the length of the string. It is allowed to speci

a null terminated string. 
Example 1 

ble word $U100 is 123.4. */
$U120 = “123.4” 
$U100 = A2F($U120, 0) /*The value of the floating point number in dou

Example 2 $U120 = “1234567” 
$U100 = A2F($U120, 6) (UD) /* The value of the floating point number in double word $U100 is 
123456. */ 

Example 3 
, 0) (S) /* The value of the floating point number in double word $U100 is 

$U120 = “-123.45” 
$U100 = A2F($U120
-123.45. */ 

 
 
 



4 14  
 

 

14-49 CHAPTER 14   USING MACROS

 

14.4.18. Run Operation 

RUN 

Format RUN(P1)  
Function  Runs the executable P1 which is on the same PC. Thi

software on the PC. 
s command is only available for the runtime

P1 (I/A) The name of the executable to be run. 
Example 1 RUN "ABC.exe" /* Run the program ABC */ 
Example 2 $U10 = "XYZ.bat" 

 RUN $U10 /* Run the batch file XYZ */

RUNW 

Format P1 = RUNW(P2) 
Function ro 

llowing this one will not be executed until the program is closed. This command is 
only available for the runtime software on the PC. 

Runs the executable P2 which is on the same PC and saves the result in P1. Note that the mac
command fo

P1 (I) The word to receive the result. 
P2 (I/A) The name of the executable to be run. 
Example 1 $U10 = RUNW "ABC.exe" /* Run the program ABC and use $U10 to get the result. */ 

IF $U10 == 0 /* If the result is 0 then run the batch file XYZ. */ 
$U20 = "XYZ.bat" 
$U11 = RUNW $U20 /* Run the batch file XYZ. */ 

ENDIF 
 



14 
 

14-50 CHAPTER 14   USING MACROS 

 

PRINT 

14.4.19. Print Operation 

Format P1 = PRINT(P2,P3 ) Data Type U 
Function Sen of data stored in byte array P2 to the printer and saves the completion code in P1. ds P3 bytes 

P1 (I) The 
of th

word to receive the completion code of the operation. The following table describes the meanings 
e completion codes. 

Code Description 
0 Succeeded 
1 Printer not ready 
3 System error 
4 Printer busy 
7 ecified No printer sp 

P2 (I) The starting location of the byte array that stores the data to be sent to the printer. 
P3 (I/C) The length in byte of the data to be sent to the printer. 
Example 1 $U1

$U2 “This is a test.” to the printer. */ 
$U1
$U2
$U10
$U20 =  the printer */ 

0 = "This is a test."  
0 = PRINT($U10, 15) /* Send the string 
0 = 10 

r */ 0 = PRINT($U10, 1) /* Send the line-feed character to the printe
 = 12 

 PRINT($U10, 1) /* Send the form-feed character to
Example 2 $U1 1b /* ESC, '@' */ 

$U20 = PRINT($U10, 2) /* Send the initialization command to the EPSON printer */ 
0 = 0x40

PRINT_SCREEN 

Format P1 = PRINT_SCREEN(P2,P3 ) Data Type U 
Function Prints screen P2 and saves the result in P1. 

P1 (I) The word to receive the completion code of the operation. The following table describes the meanings 
of the completion codes. 

Code Description 
0 Succeeded 
1 Printer not ready 
2 Invalid screen number 
3 System error 
4 Printer busy 
5 System busy 
6 Improper use of this command (See Note) 
7 No printer specified 

Note: This command can only be used in the following types of macros: Main Macro, Event Macro, 
Time Macro, and Cycle Macro. 

P2 (I/C) The number of the screen to be printed. The printed area is specified in the Screen Properties dialog 
box. 

P3 (I/C) Reserved for future use. Must be 0. 
Example 1 $U0 = PRINT_SCREEN(28, 0) /* Print screen #28*/ 



4 14  
 

 

14-51 CHAPTER 14   USING MACROS

 

BLANK 

Format P1 = BLANK (P2) Data Type  U 

Function  P1, i.e. makes the print buffer P1 con nk racters. Blanks the print buffer tain only bla  cha

P1 (I) The print buffer to be blanked. The print buffer is a byte array. You should always blank a print 
buffer before printing strings to it. 

P2 (I/C) 
. The unit is byte (one-byte character). 

F p of a print buffer is 40, it has 20 words and can contain up to 40 one-byte 
ch rs

The size of the print buffer
or exam

acte
le, if the size 

ar . 
Example 1 BLANK($U fer starting at $U100 with a length of 40 words. */ 100, 80) /* Blank the print buf

P2B 

Format P1  P2B =  ( ,  )P2 P3  Data Type  U 

Function ts the P1 to the print buffer P2 at the specified byte position P3. Prin null-terminated string 
P1 (I) The byte array that holds the string to be printed. 
P2 (I) The byte array that is used as a print buffer to accept the string P1. 

P3 (I/C) The byte position in the print buffer to put the string. The byte position counts from 0. 
For example, to print a string at the beginning of the print buffer, set P3 to 0. 

Example 1 

BLANK($U100, 20) /* Blank the print buffer. */ 

$U10, 0) /* Print the string “Weight:” at the position of byte 0 of the print buffer. */ 
r this command is 

execute
e string “12.34” at the position of byte 8 of the print buffer. */ 

P2B($U100, $U10, 14) /* Print the string “kg” at the position of byte 14 of the print buffer. */ 
RINT($U100, 20 ) /* Print string “Weight: 12.34 kg” in the print buffer to the real printer. */ 

$U10 = “Weight:” 
P2B($U100, 
$U10 = I2A(1234, 2) /* The byte array $U10 will hold the string “12.34” afte

d. */ 
P2B($U100, $U10, 8) /* Print th
$U10 = “kg” 

P

P2B_R 

Format P1 = P2B_R (P2,P3 ) Data Type  U 

Function tring P1 to the print buffer P2. The string is right aligned with the byte 
p
Prints the null-terminated s

osition P3. 
P1 (I) T byte a s the string to be printed. he rray that hold
P2 (I) T byte a s a print buffer to accept the string P1. he rray that is used a

P3 (I/C) 

T byte p  that the last characters of the string is placed. The byte position 
co s from 0. 
For example, to print a string with 6 characters at the beginning of the print buffer, set P3 to 5 as the 
last charac g should be placed at the position of byte 5. 

he osition in the print buffer
unt

ter of the strin

Example 1 

BLANK($U nk the print buffer. */ 
$  = “W
P2B_R($U  the string “Weight:” to the print buffer and align the string right with 
the positio

sition of byte 12. */ 

 print buffer and align the string right with the 
positio
PRINT($U100, 20 ) /* Print string “Weight: 12.34 kg” in the print buffer to the real printer. */ 

100, 20) /* Bla
U10 eight:” 

100, $U10, 6) /* Print
n of byte 6. */ 

$U10 = I2A(1234, 2) /* The byte array $U10 will hold the string “12.34” after this command is 
executed. */ 
P2B_R($U100, $U10, 12) /* Print the string “12.34” to the print buffer and align the string right with 
the po
$U10 = “kg” 
P2B_R($U100, $U10, 15) /* Print the string “kg” to the

n of byte 15. */ 



14 
 

14-52 CHAPTER 14   USING MACROS 

 

1  So n 

SOUN

 

 

4.4.20. und Operatio

D 

Format SOUND (P1,P2,P3 ) Data Type  U 

Function Plays the sound P1. 

P1 (I/C) 
r of the sound to be played. 

n. 
The identifie
Note: The sounds and their identifiers are defined in the sound table of the panel applicatio

P2 (I/C) The number of times you want the sound to be played. If you want the specified sound to be played 
just once, set P2 to 1. 

P3 (I/C) The break time betwe
want any break betwee

en two consecutive plays. The time unit is 100 ms (0.1 second). If you do not 
n two plays, set P3 to 0. 

Example 1 SOUND(10, 5, 3) /* Play the sound #10 5 times with a break of 0.3 second between two 
consecutive plays. */ 

STOP_SOUND 

Format STOP_SOUND  

Function Stops playing the current sound. 

Example 1 STOP_SOUND /* Stop playing the current sound.*/ 
 


	14.1. Types of Macros
	14.2. Working with Macros
	14.2.1. Creating Macros
	14.2.2. Opening and Closing Macros
	14.2.3. Naming a macro
	14.2.4. Deleting a macro
	14.2.5. Saving and Exporting Macros
	14.2.6. Macro Settings in the Dialog

	14.3. Writing Macros
	14.3.1. Macro Editor Window
	14.3.2. Macro Command Properties Tool Window

	14.4. Macro Commands and Examples
	14.4.1. Macro Notations and Terminology
	14.4.2. Data Transfer
	Assignment ( = )
	Logical NOT ( = ! )
	" "
	MOV
	SETM

	14.4.3. Arithmetic Operation
	Addition ( + )
	Subtraction ( - )
	Multiplication ( * )
	Division ( / )
	Modulus ( % )

	14.4.4. Logical Operation
	Bitwise Inclusive OR ( | )
	Bitwise AND ( & )
	Bitwise Exclusive OR ( ^ )
	Left Shift ( << )
	Right Shift ( >> )
	Logical AND ( && )
	Logical OR ( || )

	14.4.5. Calculation
	MAX
	MIN
	BMAX
	BMIN
	SUM
	XSUM
	SWAP

	14.4.6. Data Conversion
	BCD
	BIN
	DW
	W
	B2W
	W2B
	A2X
	X2A
	W2F
	D2F
	F2W
	F2D
	EXTRACT_BIT

	14.4.7. Conditional Operation
	IF ==
	IF !=
	IF >
	IF >=
	IF <
	IF <=
	IF &
	IF !&
	IF <bit>
	IF !<bit>
	ELIF ==
	ELIF !=
	ELIF >
	ELIF >=
	ELIF <
	ELIF <=
	ELIF &
	ELIF !&
	ELIF <bit>
	ELIF !<bit>
	ELSE
	ENDIF

	14.4.8. Program Control
	JMP
	<label>
	JMP ==
	JMP !=
	JMP >
	JMP >=
	JMP <
	JMP <=
	JMP &
	JMP !&
	JMP <bit>
	JMP !<bit>
	CALL
	RET
	FOR 
	NEXT 
	STOP
	END

	14.4.9. Timer Operation
	SET_T
	STOP_T
	WAIT_T

	14.4.10. Keypad Operation
	KB_MCR
	KPD_TEXT

	14.4.11. Recipe Operation
	RB2ROM
	ROM2RB
	REF_RCP_OBJ

	14.4.12. Communication Operation
	EN_LINK
	LINK_STS

	14.4.13. System Service
	GET_RTC
	SET_RTC
	SYS

	14.4.14. Screen Operation
	OPEN_WS
	CLOSE_WS

	14.4.15. File Operation
	FILE_IO
	FILE_IO_N
	MKDIR
	OPEN_FILE
	READ_FILE
	WRITE_FILE
	CLOSE_FILE
	DELETE_FILE
	RENAME_FILE
	GET_VOL_INFO
	READ_CSV　
	READ_CSV_STR　

	14.4.16. Comparison
	==
	!=
	>
	>=
	<
	<=

	14.4.17. String Operation
	STRCPY
	STRCAT
	STRLEN
	STRCMP
	STRICMP
	STRNCMP
	STRCHR
	NUM2STR
	TIME2STR
	DATE2STR
	TD2STR
	I2A
	A2I
	F2A
	A2F

	14.4.18. Run Operation
	RUN
	RUNW

	14.4.19. Print Operation
	PRINT
	PRINT_SCREEN
	BLANK
	P2B
	P2B_R

	14.4.20. Sound Operation
	SOUND
	STOP_SOUND



